EC6303 - Signals and Systems

Unit-I: Classification of Signals and Systems

Signals:

- A signal is defined as a function of one or more variables which conveys information.
- A signal is a physical quantity that varies with time in general, or any other independent variable.

One-dimensional signal:

- When a function depends on a single independent variable to represent the signal, it is said to be a 1-D signal. (Ex): ECG, EEG, speech signal.

Two-dimensional signal:

- When a function depends on two independent variables to represent the signal, it is said to be a 2-D signal. (Ex): X-ray, x-ray photograph (tomograms).
Multidimensional signal:

When a function depends on more than two independent variables to represent the signal, it is said to be a multidimensional signal.

Example: Speed of wind, air pressure depends on 4 independent variables: latitude, longitude, elevation, and time.

Classification of Signals:

Continuous-time signal:

A signal is \(x(t) \) said to be a continuous-time signal if it is defined at every instant of time \(t \). The amplitude of the signal varies with time. In general, all signals by nature are continuous-time signals. Another common name for a continuous-time signal is an analog signal.

Discrete-time signal:

It is defined at discrete instants of time.
System:

It is a physical device which changes the input signal thereby yielding a new output signal.

$$x(t) \rightarrow \text{System} \rightarrow y(t)$$

Def. It is defined as a physical device that generates a response or output signal for a given input signal. Mathematically, $$y(t) = T[x(t)]$$.

Example problem:

Sketch the signal $$x(t) = e^{-t}$$ for an interval of $$t \leq 2$$. Sample the signal with a sampling period $$T = 0.28$$ and sketch the discrete time signal.

Ans.: $$x(t) = e^{-t}$$, $$x(0) = 1$$, $$x(0.5) = 0.606$$, $$x(1) = 0.36768$$

$$x(1.5) = 0.2237$$, $$x(2) = 0.1353$$.

Sample the signal, $$x(nT) = x(t) \bigg|_{t = nT}$$

$$x(0) = 1$$
$$x(1) = 0.692 = 0.618$$
$$x(2) = e^{-0.4} = 0.67$$
$$x(3) = e^{-0.6} = 0.5088$$
$$x(4) = e^{-0.8} = 0.4099$$
$$x(5) = e^{-1} = 0.3678$$
Elementary CT signals:

To study the system's behavior we use signals as input:

1. Step
2. Impulse
3. Ramp
4. Sinusoidal
5. Exponential functions

Step signal:

Mathematically defined as,

\[
x(t) = \begin{cases} A, & t \geq 0 \\ 0, & t < 0 \end{cases}
\]

Unit step signal:

If a step function has unity magnitude then it is called a unit step function.

It is defined as,

\[
u(t) = \begin{cases} 1, & t \geq 0 \\ 0, & t < 0 \end{cases}
\]

Shifted unit step signal:

Advancing, \(u(t+a) = 0 \) for \(t < -a \)

\(u(t+a) = 1 \) for \(t \geq -a \)

Delayed unit step signal:

Delayed by \(a \),

\[
u(t-a) = \begin{cases} 0, & t < a \\ 1, & t \geq a \end{cases}
\]

www.studentsfocus.com
Ramp function:

Mathematically defined as,

\[r(t) = \begin{cases} 0, & t < 0 \\ t, & t \geq 0 \end{cases} \]

Relationship between step and ramp:

The ramp function can be obtained from applying unit step function to an integrator,

\[r(t) = \int u(t) \, dt = t \] (in the interval \(t = 0 \))

In other words, the unit step function can be obtained by differentiating the unit ramp.

Thus, \(u(t) = \frac{dr(t)}{dt} \).

Impulse function:

It is defined as, \(\int_{-\infty}^{\infty} s(t) \, dt = 1 \).

\(s(t) = 0 \) for \(t \neq 0 \).

It has the amplitude zero for everywhere except at \(t = 0 \). At \(t = 0 \), the amplitude is very high (\(\infty \)).

\[\text{Area} = \int_{-\infty}^{\infty} s(t) \, dt = 1 \]

Properties of unit impulse:

1. \(\int_{-\infty}^{\infty} x(t) \, s(t) \, dt = x(0) \rightarrow 0 \)

Let us consider the product of \(x(t) \) and \(s(t) \) which is, \(x(t) \cdot s(t) \).
Let the signal $x(t)$ be continuous at $t = 0$, the value of $x(t)$ at $t = 0$, i.e., x_0. The impulse exists only at $t = 0$.

Therefore, $x(t) \cdot s(t) = x(t) \cdot s(0)$.

Substitute $s(t)$ in Eq.

$$\int_{-\infty}^{\infty} x(t) s(t) dt = \int_{-\infty}^{\infty} x(t_0) s(t) dt.$$

$$= x(t) \int_{-\infty}^{\infty} s(t) dt.$$

$$= x(t_0).$$

Provided $x(t)$ is continuous at $t = 0$.

$$\int_{-\infty}^{\infty} x(t) s(t) dt = x(t_0).$$

2. Shifting:

$$\int_{-\infty}^{\infty} x(t) s(t-t_0) dt = x(t_0). \rightarrow \square$$

Consider, $x(t) \cdot s(t-t_0) = x(t_0) \cdot s(t-t_0)$. Substitute Eq. \square in Eq.

$$\int_{-\infty}^{\infty} x(t) s(t-t_0) dt = \int_{-\infty}^{\infty} x(t_0) s(t-t_0) dt.$$

$$= x(t) \int_{-\infty}^{\infty} s(t-t_0) dt.$$

$$= x(t_0) \int_{-\infty}^{\infty} s(t) dt.$$

$$= x(t_0).$$
3. Replication:

\[\int_{-\infty}^{\infty} x(t) \delta(t-t_0) dt = x(t_0) \]

Replace \(t \) by \(t - t_0 \) in Eqn(1), we get,

\[\int_{-\infty}^{\infty} x(t) \delta(t-t) dt = x(t) \]

Using the even property of impulse function,

\[\delta(t-t_0) = \delta(t-t) \]

\[\Rightarrow \int_{-\infty}^{\infty} x(t) \delta(t-t_0) dt = x(t) \]

Convolution of any signal with impulse function gives the original signal.

4. Shifting:

- Delayed by \(t_0 \):
 \[\delta(t-a) \]
 \[\Rightarrow x(t-a) \]

- Advanced by \(t_0 \):
 \[\delta(t+a) \]
 \[\Rightarrow x(t+a) \]

Unit Ramp function:

The unit ramp function is defined as,

\[r(t) = t, \text{ for } t \geq 0 \]
\[= 0, \text{ for } t < 0 \]

Thus, \(r(t) = t \cdot u(t) \)
3. Replication:

\[\int_{-\infty}^{\infty} x(t) \delta(t-t') \, dt = x(t). \]

Replace \(t \) by \(t' \) in Eq. (3), no get,

\[\int_{-\infty}^{\infty} x(t') \delta(t-t') \, dt' = x(t') \]

using the even property of impulse function,

\[\delta(t-t) = \delta(t-2t) \]

\[\Rightarrow \int_{-\infty}^{\infty} x(t) \delta(t-2t) = x(t) \]

\[x(t) * \delta(t) = x(t) \] * Convolution

Convolution of any signal with impulse function gives the original signal.

4. Shifting:

* Delayed by \(a \).

\[\delta(t-a) \]

* Advanced by \(a \).

\[\delta(t+a) \]

Unit Ramp Function:

The unit ramp function is defined as,

\[r(t) = t \text{ for } t \geq 0, \]

\[= 0 \text{ for } t < 0. \]

\[r(t) = t \text{ for } t \geq 0. \]
3. Replication:

\[\int_{-\infty}^{\infty} x(t) \delta(t-\omega) \, dt = x(\omega) \]

Replace \(t \) by \(\omega \) in Eqn(3), we get,

\[\int_{-\infty}^{\infty} x(t) \delta(t-\omega) \, dt = x(\omega) \]

Using the even property of impulse function,

\[\delta(t-\omega) = \delta(t-\omega) \]

\[\Rightarrow \int_{-\infty}^{\infty} x(t) \delta(t-\omega) \, dt = x(\omega) \]

Convolution of any signal with impulse function gives the original signal.

4. Shifting:

*Delayed by \(\alpha \):

\[\delta(t-a) = 0, \quad t = a \]

*Advanced by \(\alpha \):

\[\delta(t+a) = 0, \quad t = -a \]

Unit Ramp Function:

The unit ramp fn is defined as,

\[r(t) = t, \quad \text{for } t \geq 0 \]

\[= 0, \quad \text{for } t < 0 \]

\[r(t) = t \cdot u(t) \]
Sinusoidal Signal:

A continuous-time signal is given by,

\[x(t) = A \sin(\omega t + \theta) \]

- A: amplitude, \(\omega \): frequency in rad/sec, and
- \(\theta \): phase angle in radians.

Exponential Signal:

\[x(t) = Ae^{at} \]

- \(A \): signal, \(a > 0 \) for growing, \(a < 0 \) for decaying.
- Complex exponential signal:

\[x(t) = e^{\alpha t} \]

If \(a \) is positive, \(x(t) \) grows exponentially.
If \(a \) is negative, \(x(t) \) decays exponentially.
For \(a = 0 \), the \(x(t) \) is constant.
\[x(t) = e^{st} = e^{(s+j\omega)t} = e^{st}e^{j\omega t} \]

Using Euler’s identity, we can expand:
\[e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) \]

\[x(t) = e^{st} (\cos(\omega t) + j\sin(\omega t)) \]

Depending on \(s \) and \(\omega \) values, we get,
(i) If \(s = 0 \), and \(\omega = 0 \), then \(x(t) = 1 \), \(x(t) \) is a DC signal.
(ii) If \(s = 0 \), and \(\omega \), \(x(t) = e^{st} \), which acts as an exponential signal.
(iii) If \(s = 0 \), then \(s = \pm j\omega \) gives \(x(t) = e^{j\omega t} \), \(x(t) \) is a sinusoidal signal with \(\phi = 0 \)
(iv) If \(s = 0 \), with finite \(\omega \), we get exponentially decaying sinusoidal signal.
(v) If \(s > 0 \), with finite \(\omega \), we get exponentially growing sinusoidal signal.

\[x(t) \]

\[x(t) \]
Representation of DT signals:

1. Graphical rep 2. Functional rep

Graphical:

```
  2 |
  1 |
  0 |
-1 -0.5 0 1 2 3 4 5 n
```

Functional:

```latex
x(n) = \begin{cases} 
  1, & n = -1 \\
  2, & n = 0 \text{ or } 1 \\
  3, & n = 2 \\
  1, & n = 3 \\
  0, & n = 4 \\
\end{cases}
```

Tabular:

<table>
<thead>
<tr>
<th>n</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x(n)</td>
<td>1</td>
<td>2</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Classification of signals:

1. Continuous and deterministic
2. Deterministic & random
3. Periodic & Aperiodic
4. Even & odd
5. Causal & non-causal

Continuous and discrete-time signals:

discussed already in earlier section.

Deterministic: It is a signal exhibiting no uncertainty of value at any given instant.
It can be accurately expressed or predicted by mathematical eqn.

A Signal

Random Signal:

is a signal characterized by uncertainty before its actual occurrence.

Example

Periodic Signal:

A continuous-time signal \(x(t) \) is said to be periodic if it satisfies the condition,

\[
x(t + T) = x(t) \quad \text{for all } t.
\]

The smallest value of \(T \) that satisfies the above condition is known as fundamental period.

Aperiodic Signal:

A signal is aperiodic if it does not satisfy the above condition at least one value of \(t \) and \(n \).

In the case of discrete-time signal, the condition is modified as,

\[
x(n) = x(n + N) \quad \text{for all } n.
\]

Periodic or

N = fundamental period.
The DT signal to be periodic, fundamental frequency.

We must be a rational multiple of the fundamental frequency.

DT signal is periodic.

Symmetric (Even): Anti-symmetric (Odd).

Even: \(x(t) \) is even if it satisfies

\[x(-t) = x(t) \text{ for all } t \]

Odd: \(x(t) \) is odd if it satisfies

\[x(-t) = -x(t) \text{ for all } t \]

Any signal can be represented as the sum of odd and even components.

\[x(t) = x_e(t) + x_o(t) \]

Replacing \(t \) by \(-t\), gives,

\[x(-t) = x_e(-t) + x_o(-t) \]

\[x(-t) = x_o(t) - x_o(t) \rightarrow 0 \]

Adding eqns (a) & (b)

\[x_e(t) = x_e(t) + x_e(t) \]

\[x(t) = \frac{1}{2} \left[x(t) + x(-t) \right] \]
Energy & Power Signals:

- **Total Energy of CT Signal $x(t)$ is**

 $$E = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 \, dt \text{ Joules}$$

- **Avg. Power of CT Signal $x(t)$ is**

 $$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt \text{ Watts}$$

 For DT $x[n]$,

 $$E = \sum_{n=-\infty}^{\infty} |x(n)|^2$$

 $$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

Definition:

- A $x[n]$ $x(t)$ is called an energy signal if the energy satisfies $E < \infty$, for an energy signal $P = 0$

- A $x[n]$ $x(t)$ is called a power signal if the power satisfies $E = \infty$ for a power signal $P = \infty$.

The signals that don't satisfy above properties are neither energy nor power signals.
Causal & non-causal:

A signal is causal if,
\[x(t) = 0 \text{ for } t < 0, \text{ otherwise non-causal.} \]

An anticausal signal is, \[x(t) = 0 \text{ for } t > 0. \]

In the case of DT signal,
Causal if \[x(n) = 0 \text{ for } n < 0, \text{ otherwise non-causal.} \]

An anticausal signal is,
\[x(n) = 0 \text{ for } n > 0 \]

Classification of systems

1. CT & DT, S/M
2. Lumped & distributed parameters
3. Static & Dynamic
4. Causal & Non-causal
5. Linear & Non-linear
6. Time invariant & time variant
7. Stable & Unstable

CT & DT systems:

CTsys: operates on a CT, \(x(t) \) produces a CT output, \(y(t) \).
\[x(t) \xrightarrow{\text{CTsys}} y(t) \]
\[y(t) = T[x(t)] \]
Ex: Amplifiers, filters, motors etc.

DTsys: operates on a DT, \(x[n] \), and produces DT output, \(y[n] \).
\[x[n] \xrightarrow{\text{DTsys}} y[n] \]
Lumped & distributed parameters:

Lumped: in which each & every component is lumped at one point in space. These are described by ordinary differential eqn.

Distributed parameter sys: in which no are fun of space as well as time. These are described by partial differential eqn.

Static & Dynamic sys:

A sys is called static or memory less, if its o/p at any instant depends on the i/p at that instant but not on past or future values of i/p.

\[y(t) = x^2(t) \]
\[y(n) = n \times c(n) \]

O/w, sys is dynamic or with memory.

\[y(t) = \frac{d}{dt} x(t) \]
\[y(n) = x(n-1) \]

Linear or non-linear:

A sys that satisfies the superposition principle is called linear sys.

Superposition principle states that, response to a weighted sum of i/p can be equal to the weighted sum of i/p corresponding to the each of individual i/p sys. For continuous time linear sys,
where \(\text{ILP } x_1(t) \) produces \(\text{O/LP } y_1(t) = T[x_1(t)] \).

* ILP \(x_2(t) \) produces \(\text{O/LP } y_2(t) = T[x_2(t)] \).

System is linear if:

\[
\text{ILP } a_1 x_1(t) + b x_2(t) \text{ produces } \text{O/LP } a_1 y_1(t) + b y_2(t).
\]

A system doesn't satisfy this principle is called as, non-linear system.

\[
T(a x_1(t) + b x_2(t)) = a T[x_1(t)] + b T[x_2(t)].
\]

From superposition theorem, a zero input results in zero output.

Causal and Non-causal S/LM:

Causal S/LM: for which O/LP at any time \(t \) or \(n \) depends on present & past I/LP but not the future I/LP. These are also called as non-anticipative S/LM.

Non-causal S/LM: for which O/LP depends on future values.

Time Invariant & Time Variant SLM:

TI S/LM: its I/P-O/P cha does not change with time (relationship).
also be delayed by T units in T - tim.

\[y(t-T) = T \{ x(t-T) \} \]

If \(y(t) \) due to \(x(t) \) is not equal to \(y(t-T) \); then \(y(t) \) is time variant.

Stable and unstable res.

A res. is said to be bounded if \(x(t) \) is bounded and \(y(t) \) is bounded, stable if \(y(t) \) is only if every bounded \(x(t) \) produces a bounded \(y(t) \).

An \(x(t) \) if \(x(t) \) is bounded if it satisfies the condition, \(|x(t)| \leq Mx < \infty \), for all \(t \).

Similarly for \(y(t) \), \(|y(t)| \leq My < \infty \), for all \(t \).
From the basic knowledge of impulse response of the system we can find whether the system is stable or not.

Basic operations on signals

1. Time shifting
2. Time reversal
3. Time scaling
4. Amplitude scaling
5. Multiplication
6. Additive

1. **Time shifting:**
 - Time shifting of \(x(t) \) may delay or advance the signal in time.
 - \(y(t) = x(t - T) \)
 - \(T > 0 \) - advance, \(T < 0 \) - delay

2. **Time reversal:**
 - Time reversal of a signal \(x(t) \) can be obtained by folding the signal about \(t = 0 \).
 - \(x(-t) \) is the reflection of \(x(t) \) about \(t = 0 \).
The conditions are same for DT signals.

3. Time scaling:

\[y(t) = x(\alpha t) \]

where \(\alpha \) is integer or fraction.

<table>
<thead>
<tr>
<th>(\alpha) value</th>
<th>compression/Enlargement</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>compression</td>
</tr>
<tr>
<td>fraction</td>
<td>enlargement</td>
</tr>
</tbody>
</table>

(i) \(\alpha = 2 \):

\[y_1(t) = x(\alpha t) \]

\[y_2(t) = x(\alpha t) \]

(Compression)

(Enlargement)
9. **Amplitude scaling.**

\[y(t) = A \cdot x(t) \]

- If \(A = 3 \), \(y(t) = 3 \cdot x(t) \)

5. **Signal addition.**

- Sum of 2 CT signals can be obtained by adding their values at every instant.
- Subtraction of 2 CT signals can be obtained by subtracting their values at every instant.

\[x_1(t) + x_2(t) \]

Addition

\[x_1(t) \]

\[x_2(t) \]

\[y(t) = x_1(t) + x_2(t) \]

\[y_2(t) = x_1(t) - x_2(t) \]
6. **Signal Multiplication:**

Multiplication of two signals can be obtained by multiplying their values at every instant.

\[x(t) \cdot y(t) \rightarrow y(t) = x(t) \cdot y(t) \]

Derivation of fundamental period and freq of periodic \(x(t) \):

For periodic \(x(t) \),
\[x(t) = x(t+T) \]

Let \(x(t) = A \sin(\omega_0 t + \theta) \rightarrow (1) \)

So, \(x(t+T) = A \sin(\omega_0 (t+T) + \theta) \)

\[= A \sin(\omega_0 t + \omega_0 T + \theta) \rightarrow (2) \]

\(x(t) \) and \(x(t+T) \) are equal when \(0 = (2 \pi / \omega_0) T + \theta \)

Thus, the fundamental period \(T \) and frequency \(\omega_0 \) of \(x(t) \) can be determined.
$T = \frac{2\pi}{f_0}$ \quad \text{Fundamental period.}

$\omega_c = \frac{2\pi}{T}$ \quad \text{Fundamental freq.}

\(\odot \) \text{ Let } x(t) = e^{j\omega t} \rightarrow (1) \\
\quad x(t+T) = e^{j\omega (t+T)} \\
\quad e^{j\omega T} \cdot e^{j\omega t} \\
\odot \text{ and } e \text{ are equal when, } \\
\quad e^{j\omega T} = 1 \\
\quad \omega T = 2\pi \\
\quad \Rightarrow T = \frac{2\pi}{\omega_0} \\
\quad \Rightarrow \omega_0 = \frac{2\pi}{T} \\
\end{align} \\
\text{Condition for DT S1 to be periodic:} \\
\text{For periodic } x(t), x(t+nT) = x(t+nT) \\
\text{Let } x(t+nT) = A \sin \left(\omega_0 t + \phi \right) \rightarrow (2) \\
\quad x(t+nT) = A \sin \left(\omega_0 t + n\omega_0 T + \phi \right) \rightarrow (3) \\
\odot \text{ and } (2) \text{ are equal when, } \\
\quad \omega_0 n = 2\pi m \\
\quad N = \frac{2\pi m}{\omega_0} \\
\quad \frac{\omega_0}{N} = 2\pi m \\
\end{align} \\
\text{So for DT S1 to be periodic, fundamental freq \(\omega_c \) must be a rational multiple of } \pi. \text{ Otherwise, } \\
\text{DT is aperiodic.} \\
\text{Problem:} \\
\text{CM elementary } \sin \text{ and basic operations:} \\
\begin{align} \\
\text{1. Sketch the following:} \\
\quad \sin \left(\frac{\pi t}{4} \right) \\
\quad \cos \left(\frac{\pi t}{4} \right) \\
\quad \sin \left(\frac{\pi t}{2} \right) \\
\end{align}
2. \[-2u(t-1)
\]

3. \[3y(t-1)
\]

4. \[\pi(t+3)
\]

5. For the signal shown in fig, find the following:
 (i) \(x(t-2)

 (ii) \(x(t+3)

 (iii) \(x(\frac{t}{2})

 (iv) \(x(t+1)

 (v) \(x(2t+3)

 (vi) \(x(t+3)(t+3)

 (vii) \(x(2t+8)

 \]

-3 ≤ t ≤ -2, x(t) = 0
-2 ≤ t ≤ -1, x(t) = 2
-1 ≤ t ≤ 0, x(t) = 1.
(iii) $x(t) \rightarrow t$

8) $x\left(\frac{1}{2}t\right)$ can be obtained by compressing $x(t)$ by $\frac{1}{2}$ times.

1.10 Sketch the following

(i) $u(t)-u(t-2)$

(ii) $u(t+\frac{1}{2})$ $u(t)$

(iii) $u(t)$ $u(t-\frac{1}{2})$

(iv) $u(t)$ $u(t)$

1.12 Find the fundamental period T of the following:

(a) $x(t) = e^{j5t}$

It is in the form of $e^{j\omega t}$.

Fundamental period $T = \frac{2\pi}{\omega} = \frac{2\pi}{5} = 0.4\text{ rad/sec}$

(b) $x(t)$ is in the form of $\sin(\omega t)$

Fundamental period $T = \frac{2\pi}{\omega} = \frac{2\pi}{5} = 0.4\text{ rad/sec}$

where, $\omega = \frac{5\pi}{2}$

$T = \frac{2\pi}{\omega} = \frac{2\pi}{\frac{5\pi}{2}} = \frac{4}{5}$
11. \(2 \cos (10 \pi t + \pi/6) \)

It is of the form \(A \cos (\omega t + \phi) \)

\[\omega = 10 \pi \]
\[T = \frac{2 \pi}{\omega} = 0.2 \text{ sec} \]

1.13 Find whether following NO are periodic or not

(i) \(x(t) = 2 \cos (10t + 1) - \sin (4t - 1) \)

\[T_1 = \frac{2 \pi}{10} = \frac{\pi}{5} \rightarrow \text{periodic} \]

\[T_2 = \frac{2 \pi}{4} = \frac{\pi}{2} \rightarrow \text{periodic} \]

\[\frac{T_1}{T_2} = \frac{\frac{\pi}{5}}{\frac{\pi}{2}} = \frac{2}{5} \rightarrow x(t) \text{ is periodic} \]

\[T = 5 \text{ sec} \]

(ii) \(x_2(t) = \cos (60t) + \sin (50t) \)

\[T_1 = \frac{2 \pi}{60} = \frac{\pi}{30} \rightarrow \text{periodic} \]

\[T_2 = \frac{2 \pi}{50} = \frac{\pi}{25} \rightarrow \text{periodic} \]

\[\frac{T_1}{T_2} = \frac{\frac{\pi}{30}}{\frac{\pi}{25}} = \frac{5}{6} \rightarrow \text{periodic} \]

\[T = 5 \text{ sec} \]

(iii) \(2 \cos t + 3 \sin 2t \)

\[x(t) \text{ is aperiodic} \]

\[T_2 = \frac{2 \pi}{2} = \pi \text{ sec} \]

\[80, \text{sum is aperiodic} \]
Even & odd signals

1.15 Find even & odd components of following.

(i) \(x(t) = \cos t + \sin t + \cos t + \sin t \)

\(x(-t) = \cos(-t) + \sin(-t) - \cos t - \sin t \)

\(x_{\text{even}}(t) = \frac{1}{2} \left[x(t) + x(-t) \right] \)

\(x_{\text{even}}(t) = \frac{1}{2} \left[2\cos t \right] = \cos t \)

\(x_{\text{odd}}(t) = \frac{1}{2} \left[x(t) - x(-t) \right] \)

\(= \frac{1}{2} \left[2\sin t + 2\cos t \sin t \right] \)

\(= \sin t + \cos t \sin t \).

(ii) \(x(n) = \{-2, 1, 2, -1, 3\} \)

\(x_{\text{even}}(n) = \frac{1}{2} \left[x(n) + x(-n) \right] \)

\(x_{\text{even}}(0) = \frac{1}{2} \left[x(0) + x(0) \right] = 0 \)

\(x_{\text{even}}(1) = \frac{1}{2} \left[x(1) + x(-1) \right] = 0 \)

\(x_{\text{even}}(2) = \frac{1}{2} \left[x(2) + x(0) \right] = 0.5 \)

\(x_{\text{even}}(3) = \frac{1}{2} \left[x(3) - x(-3) \right] \)

\(x_{\text{odd}}(0) = \frac{1}{2} \left[x(0) - x(-0) \right] = 0 \)

\(x_{\text{odd}}(1) = \frac{1}{2} \left[x(1) - x(-1) \right] = -1 \)

\(x_{\text{odd}}(2) = \frac{1}{2} \left[x(2) - x(-2) \right] = \frac{3 - (-2)}{2} = 2.5 \)

\(x_{\text{odd}}(3) = \{-2.5, 1, 0, -1, 2.5\} \).
Energy and power signals

1.16 Determine power & R.M.S. Value of \(x(t) = A \cos (\omega_0 t + \phi) \)

\[
P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A^2 \cos^2 (\omega_0 t + \phi) \, dt
\]

\[
= \lim_{T \to \infty} \frac{A^2}{2} \left[\int_{-T}^{T} \frac{1 + \cos (2\omega_0 t + 2\phi)}{2} \, dt \right]
\]

\[
= \lim_{T \to \infty} \frac{A^2}{4T} \left[2T + \lim_{T \to \infty} \int_{-T}^{T} \cos (2\omega_0 t + 2\phi) \, dt \right]
\]

\[
= \lim_{T \to \infty} \frac{A^2}{4T} (2T) + 0 = \frac{A^2}{2}
\]

POWER = \(\frac{A^2}{2} \)

R.M.S. value = \(\sqrt{\frac{A^2}{2}} = \frac{A}{\sqrt{2}} \)

1.17 Determine the power and RMS value of followings

(i) \(x_1(t) = 5 \cos (5\omega_0 t + \pi/3) \)

Power = \(5^2 \times \frac{1}{2} = 12.5 \text{ W} \)

RMS value = \(\sqrt{12.5} = 3.53 \)

(ii) \(x_2(t) = 10 \sin (5\omega_0 t + \pi/4) + 16 \cos (10\omega_0 t + \pi/3) \)

Power = \(\frac{10^2}{2} + \frac{16^2}{2} = 178 \text{ W} \)

RMS = \(\sqrt{178} = 13.34 \)

(iii) \(x_3(t) = 10 \cos 5t + \cos 10t \)
(iv) \(x(t) = e^{j\omega t} \cos 2\omega t \)

\[
P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |e^{j\omega t} \cos 2\omega t|^2 dt
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} (e^{j\omega t} \cos 2\omega t)^2 dt
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} (e^{j\omega t} \cos 2\omega t)(e^{-j\omega t} \cos 2\omega t) dt
\]

\[
= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \cos^2 2\omega t dt
\]

\[
= \lim_{T \to \infty} \frac{1}{2} \int_{-T}^{T} (1 + \cos 4\omega t) dt
\]

\[
= \lim_{T \to \infty} \left[\frac{1}{2} t + \frac{1}{2} \sin 4\omega t \right]_{-T}^{T}
\]

\[
= \frac{1}{2} T + \frac{1}{2} \sin 4\omega T - \frac{1}{2} (-T) - \frac{1}{2} \sin 4\omega (-T)
\]

\[
rms = \sqrt{\frac{1}{2}}
\]

10. \(x_5(t) = A e^{j\omega t} \)

Power = \(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |A e^{j\omega t}|^2 dt \)

\[
= \lim_{T \to \infty} \frac{A^2}{2T} \int_{-T}^{T} dt
\]

\[
= \frac{A^2}{2T} \int_{-T}^{T} dt = \frac{A^2}{2T} \cdot 2T = A^2
\]

\[
rms = A
\]

Energy of signal

1.7 Sketch the following and calculate their energies.

1. \(e^{-\alpha t} u(t) \)

\[
E = \lim_{T \to \infty} \int_{-T}^{T} |e^{-\alpha t} u(t)|^2 dt
\]

\[
= \lim_{T \to \infty} \int_{-T}^{T} e^{-2\alpha t} dt
\]

\[
= \lim_{T \to \infty} \left[-\frac{e^{-2\alpha t}}{2\alpha} \right]_{-T}^{T}
\]

\[
= \lim_{T \to \infty} \left(-\frac{e^{-2\alpha T}}{2\alpha} + \frac{e^{2\alpha T}}{2\alpha} \right)
\]

\[
= -\frac{e^{-2\alpha T}}{2\alpha} + \frac{e^{2\alpha T}}{2\alpha}
\]

\[
e^{2\alpha T} = \frac{1}{2} \Rightarrow \frac{e^{2\alpha T}}{2\alpha} = \frac{1}{2\alpha}
\]

\[
= \frac{1}{2} - \frac{1}{2\alpha}
\]

\[
e^{-2\alpha T} = \frac{1}{2} \Rightarrow \frac{e^{-2\alpha T}}{2\alpha} = \frac{1}{2\alpha}
\]

\[
= \frac{1}{2} - \frac{1}{2\alpha}
\]

\[
= \frac{1}{2} - \frac{1}{2\alpha}
\]

\[
= \frac{1}{2} - \frac{1}{2\alpha}
\]
1.20 Which of the following are energy signals?

(i) \(u(t) - u(t-1) \)

\[
E = \int_{0}^{1} |x(t)|^2 dt = 1\]

\[
P = \lim_{T \to \infty} \frac{1}{2T} \int_{0}^{2T} x(t)^2 dt = 0.
\]

Since \(E \) finite and \(P = 0 \), \(x(t) \) is energy signal.

(ii) \(x(t) - x(t-2) \)

\[
E = \lim_{T \to \infty} \left[\frac{1}{2} \int_{0}^{T} x(t)^2 dt + \frac{1}{2} \int_{0}^{T} x(t)^2 dt \right].
\]

\[
P = \lim_{T \to \infty} \left(\frac{t^2}{3} + 4(T-2)^2 \right) = 4.
\]

\[
P = \lim_{T \to \infty} \left(\frac{t^2}{3} + 4(T-2)^2 \right).
\]

\[
E = \lim_{T \to \infty} \left[\frac{t^2}{3} + 4(T-2)^2 \right] = \infty.
\]

122 Determine energy and power of following signals.

(i) \(x(t) = t \cdot u(t) \)

\[
E = \lim_{T \to \infty} \int_{0}^{T} t^2 dt = \infty.
\]

\[
P = \lim_{T \to \infty} \int_{0}^{T} t^2 dt = \infty.
\]
1.23 Find which of the following are causal or noncausal.

(i) $x(t) = e^{at} u(t)$

$x(t) = 0$ for $t < 0$, so $x(t)$ is causal.

(ii) $x(t) = e^{-at} u(t)$

$x(t) \neq 0$, for $t < 0$, so $x(t)$ is noncausal.

(iii) $x(t) = \text{ sinc } t$

$x(t) = 0$, for $t < 0$, so $x(t)$ is noncausal.

1.24 Consider the signals $x_1(t)$ shown in the figure. Plot $x_1(t-1) + x_1(t+2)$.

Static and dynamic systems

2.1 Find whether the folowing systems are dynamic or not.

(i) $y(t) = x(t-2)$ — Dynamic (depends on past input)

(ii) $y(t) = x(t+2)$ — Dynamic (depends on future input)

(iii) $y(t) = x(t)$ — Static (depends on current input)
Causal / Non-causal Systems

2.2 Check whether the following systems are causal or not.

(i) \(y(n) = \frac{x(n) + 1}{x(n-15)} \) → causal (present output depends on only present part)

(ii) \(y(t) = x(t) + x(t-2) \) → causal

(iii) \(y(t) = x(t) + x(t-2) + x(2-t) \) → non-causal

(iv) \(y(t) = e^{t} \int_{-\infty}^{t} x(\tau) \, d\tau \) → NC.

(v) \(y(t) = x(-t) \) → NC.

Linear / Non-linear Systems

2.3 Check whether the following systems are linear or not.

(i) \(\frac{d}{dt} y(t) + 3y(t) = t^2 x(t) \)

For an input \(x(t) \) corresponding output \(y_1(t) \), then

\[
\frac{d}{dt} y_1(t) + 3y_1(t) = t^2 x_1(t) \rightarrow \Box
\]

\[
\frac{d}{dt} y_2(t) + 3y_2(t) = t^2 x_2(t) \rightarrow \Box
\]

\[
(ax_1(t) + bx_2(t)) \rightarrow a y_1(t) + b y_2(t)
\]

\[
\Rightarrow a \frac{d}{dt} y_1(t) + 3at y_1(t) = a t^2 x_1(t)
\]

\[
\Rightarrow b \frac{d}{dt} y_2(t) + 3bt y_2(t) = b t^2 x_2(t)
\]

\[
\Rightarrow \frac{d}{dt} [ay_1(t) + by_2(t)] + 3t [ay_1(t) + by_2(t)]
\]
\[\frac{d}{dt} y(t) + 2 \frac{d}{dt} y(t) = x(t) \]
\[\frac{d}{dt} y_1(t) + 2 y_1(t) = x_1(t) \]
\[\frac{d}{dt} y_2(t) + 2 y_2(t) = x_2(t) \]
\[\frac{d}{dt} [a y_1(t) + b y_2(t)] + 2 [a y_1(t) + b y_2(t)] = a x_1(t) + b x_2(t) \]
\[\text{not a linear fn of weighted sum of inputs} \]
\[\frac{dy(t)}{dt} + 2 y(t) = x(t) \frac{d}{dt} x(t) \]
\[\frac{d}{dt} y_1(t) + 2 y_1(t) = x_1(t) \frac{d}{dt} x_1(t) \]
\[\frac{d}{dt} y_2(t) + 2 y_2(t) = x_2(t) \frac{d}{dt} x_2(t) \]
\[a \frac{d}{dt} y_1(t) + 2 a y_1(t) = a x_1(t) \frac{d}{dt} x_1(t) \]
\[b \frac{d}{dt} y_2(t) + 2 b y_2(t) = b x_2(t) \frac{d}{dt} x_2(t) \]
\[\frac{d}{dt} [a y_1(t) + b y_2(t)] + 2 [a y_1(t) + b y_2(t)] = \frac{d}{dt} x_1(t) + b x_2(t) \]
\[\text{RHS is not a fn of weighted sum of inputs} \]
\[\text{no system is noncausal} \]
\[y(t) = 2 x(t) + \frac{1}{x(t-1)} \]
\[y_1(t) = 2 x_1(t) + \frac{1}{x_1(t-1)} \]
\[y_2(t) = 2 x_2(t) + \frac{1}{x_2(t-1)} \]
a y_{1}(n) + b y_{2}(n) = a \left(2 x_{1}(n) + \frac{1}{a_{1}x_{1}(n)} \right) + b \left(2 x_{2}(n) + \frac{1}{a_{1}x_{2}(n)} \right)
\hspace{2cm} \frac{1}{a_{1}x_{1}(n)}

y_{3}(n) = \frac{T}{a_{1}x_{1}(n) + b x_{2}(n)} = 2 \left(a_{1}x_{1}(n) + b x_{2}(n) \right) +

\frac{1}{a_{1}(n-1)}

\hspace{2cm} \frac{1}{a_{1}(n-1) + b x_{2}(n-1)}

\hspace{2cm} \frac{1}{a_{1}(n-1) + b x_{2}(n-1)}

\hspace{2cm} \frac{1}{a_{1}(n-1) + b x_{2}(n-1)}

So, Non-causal. $a_{1}(n-1) + b x_{2}(n-1) \neq 0$

2.4: Check whether the given systems are linear or non-linear.

(i) $y(t) = e^{ax(t)}$

\[y_{1}(t) = e^{ax(t)} \hspace{2cm} y_{2}(t) = e^{ax(t)} \rightarrow \Box\]

\[a y_{1}(t) = e^{ax(t)} \hspace{2cm} b y_{2}(t) = e^{bx(t)} \rightarrow \Box\]

\[a y_{1}(t) + b y_{2}(t) = e^{ax(t)} + e^{bx(t)} \rightarrow \Box\]

\[y_{3}(t) = \frac{1}{a_{1}(t) + b_{2}(t)} \rightarrow \Box\]

\[a y_{1}(t) + b y_{2}(t) + y_{3}(t) \rightarrow \Box\]

So, Non-linear

Time invariant / Non-invariant systems.

Steps:

1. $y(t) \rightarrow T(x_{1}(t)) \hspace{2cm} y(t + T) \rightarrow T(x_{1}(t + T))$

2. Delay the input $x_{1}(t)$ by T and denote it by $x_{1}(t - T)$.

3. If $y(t + T) = y(t - T)$ then TI.

4. If $y(t + T) \neq y(t - T)$ then TV.

5. If $y_{c}(n) = T(x_{c}(n)) \hspace{2cm} y_{c}(n) = T(x_{c}(n-k))$

6. If $y_{c}(n-k) = y_{c}(n-k)$ then TI.
For each of the following signals, determine whether the signal is TI or not.

1. \(y(t) = t x(t) \)
 - \(y(t+T) = (t+T) x(t+T) \rightarrow 0 \)
 - \(y(t-T) = (t-T) x(t-T) \rightarrow 0 \)
 ⇒ \(y(t) \) is not TI.

2. \(y(t) = e^{-t} x(t) \)
 - \(y(t+T) = e^{-(t+T)} x(t+T) \rightarrow 0 \)
 - \(y(t-T) = e^{-(t-T)} x(t-T) \rightarrow 0 \)
 ⇒ \(y(t) \) is TI.

Check whether the following are TV or TI.

1. \(\frac{dy(t)}{dt} + 5y(t) = x(t) \)
 - TV.

2. \(y(t) = x(t) + x(t-T) + t x(t-T) \)
 - TV.

3. \(y(t) = x(t+T) + x(t-T) \)
 - TV.

4. \(y(t) = \sin(x(t)) + \cos(x(t)) \)
 - TV.

5. \(y(t) = e^{-t} x(t) \)
 - TV.
Invertibility & Inverse System

\[\begin{align*}
&x(t) \rightarrow T \rightarrow x(t) = y'(t). \\
&y(t) = T[x(t)] \\
&y'(t) = T^{-1}[y(t)] = T^{-1}(T[x(t)]) = x(t)
\end{align*} \]

To check whether the SLM is stable or not:
1. If the SLM produces zero output for any input then the SLM is not invertible.
2. If the SLM gives same output for different inputs then that SLM is non-invertible.

0. \[y(t) = Cx(t) \]

 For any \(x(t) \) separated by \(C \), SLM gives same output. \(\therefore \) SLM is non-invertible.

1. \[y(t) = \frac{d}{dt} x(t) \]

 If \(x(t) \) is constant, then output is zero. \(\therefore \) Non-invertible.

2. \[y(t) = x(t + 3) \]

 Invertible. Inverse SLM is \(y(t) = x(t + 3) \)

3. \[y(t) = x^2(t) \]

 Non-Invertible.
Stable & unstable

CT Stable \rightarrow \int_{-\infty}^{\infty} h_C(t) dt < \infty

DT Stable \rightarrow \sum_{n=-\infty}^{\infty} |h_C[n]| < \infty.

\(h_C(t) \) is bounded when \(t \rightarrow \infty \) then \(y_C(t) = \infty \)

\(y(t) > y_C(t) \) in (0, \infty).

\(h_C(t) \) is bounded value of \(\sin \) fn. \(u(t - 1) \) to \(t \).

\(\sin \) fn. is multiplied by bounded fns.

\(y(t) \) is Stable.

\(n(t) \rightarrow \text{stable} \)

\(h_C(t) = e^{-3t}H \)

\(\int_{-\infty}^{\infty} |h_C(t)| dt = \int_{-\infty}^{0} e^{-3t} dt + \int_{0}^{\infty} e^{-3t} dt + \int_{-\infty}^{\infty} e^{-3t} dt = \frac{1}{3} (e^{3t})^0 + \left(-\frac{1}{3} \right) (e^{-3t})^\infty \)

\(= \frac{1}{3} (1) - \frac{1}{3} (-1) = \frac{2}{3} < \infty \)

Sim is Stabile.

\(h_C(t) = e^{-3t} u(t+2) \)

\(\int_{-\infty}^{\infty} |h_C(t)| dt = \int_{-2}^{\infty} e^{3t} dt = \frac{1}{3} (e^{3t})^\infty = \infty \)

Unstable.
Tutorial samples of problems on systems

(Problems)

Check whether the following SIs are
(a) static or dynamic (b) linear or non-linear
(c) causal or non-causal (d) time invariant or

time variant.

(i) \(y(t) \frac{d^2 y(t)}{dt^2} + 3t \frac{dy(t)}{dt} + y(t) = x(t) \)

Static or dynamic: The IS is described by
differential eqn. Hence it is a \(\textit{dynamic IS} \)

Linear or non-linear:

Condition: \(T [a x_1(t) + b x_2(t)] = a T[x_1(t)] + b T[x_2(t)] \)

\(x(t) = y(t) \frac{d^2 y(t)}{dt^2} + 3t \frac{dy(t)}{dt} + y(t) \)

\(x_2(t) = y_2(t) \frac{d^2 y_2(t)}{dt^2} + 3t \frac{dy_2(t)}{dt} + y_2(t) \)

\(a x_1(t) = a y_1(t) \frac{d^2 y_1(t)}{dt^2} + 3a t \frac{dy_1(t)}{dt} + a y_1(t) \)

\(b x_2(t) = b y_2(t) \frac{d^2 y_2(t)}{dt^2} + 3 b t \frac{dy_2(t)}{dt} + b y_2(t) \)

\(a x_1(t) + b x_2(t) = a y_1(t) \frac{d^2 y_1(t)}{dt^2} + 3a t \frac{dy_1(t)}{dt} + a y_1(t) \)

\(+ b y_2(t) \frac{d^2 y_2(t)}{dt^2} + 3 b t \frac{dy_2(t)}{dt} + b y_2(t) \)

\(a y_1(t) \frac{d^2 y_1(t)}{dt^2} + b y_2(t) \frac{d^2 y_2(t)}{dt^2} + 3t \left[a \frac{dy_1(t)}{dt} + b \frac{dy_2(t)}{dt} \right] \)
boxed position is not a to of weight sum of
clp. Hence superposition principle is not
satisfied, and the s/n is non-linear.
causal or non-causal?
The clp depends on the present i/p only.
Hence the s/n is causal.
Time-invariant or Time Variant?
The coefficients of the differential egn are
function of time. Hence the s/n is time-variant.

\[\frac{d^3y(t)}{dt^3} + 4 \frac{dy(t)}{dt^2} + 5dy(t) + ay^3(t) = x(t) \]

static or dynamic: The s/n is described by a
differential egn. Hence it is a dynamic s/n.
Linear or nonlinear: The condition for superposition
theorem,
\[T(ax_1(t) + bx_2(t)) = aT(x_1(t)) + bT(x_2(t)) \]

\[ax_1(t) = \frac{d^3y(t)}{dt^3} + 4 \frac{dy(t)}{dt^2} + 5dy(t) + ay^3(t) \]

\[bx_2(t) = \frac{d^3y(t)}{dt^3} + 4 \frac{dy(t)}{dt^2} + 5dy(t) + ay^3(t) \]

\[\frac{d^3y(t)}{dt^3} + 4 \frac{dy(t)}{dt^2} + 5dy(t) + ay^3(t) \]

\[ax_1(t) + bx_2(t) \]
\[
\frac{d^3}{dt^3} [a y_1(t) + b y_2(t)] + 4 \frac{d^2}{dt^2} [a y_1(t) + b y_2(t)] \\
+ 5 \frac{d}{dt} [a y_1(t) + b y_2(t)] + 2 a y_1(t) + 2 b y_2(t)
\]

Shaded portion in the RHS is to be weighted sum of square of inputs. Superposition principle is not satisfied. Thus the system is **non-linear**

Causal or non-causal? The output depends on present input only. Therefore the system is **causal**

Time variant or Time variant? The coefficients of differential equations are constant. Hence the system is **time-invariant**

\[y[n] = x[n] + x[n-1]\]

Static or dynamic? The output depends on the past values of input. So, the system is **dynamic**

Linear or non-linear?

\[y[n] = a x[n] + b x[n-1]\]

\[y[n] = a x[n] + b x[n-1]\]

\[b y_1[n] = b x[n] + b x[n-1]\]

\[a x[n] + b x[n-1] = a x[n] + b x[n-1]\]

Hence the system is **linear**
Causal or non-causal?

The output depends on present and past values of input. Hence the system is **causal**.

Time-invariant or variant?

The output due to delayed input is

\[y[n-k] = T[x[n-k]] = x[n-k] \cdot \delta[n-1-k] \]

The delayed output is

\[y[n-k] = x[n-k] \cdot \delta[n-1-k] \]

\[y[n-k] = y[n-k] \]

The system is **time-invariant**.

The system is **dynamic, non-linear, causal and time-invariant**.

(iv) \[y[n] = \cos[\alpha x[n]] \]

Static or dynamic?

The output at any instant depends on the input at that instant. Hence the system is **static**.

Linear or non-linear?

\[y_1[n] = \cos(x_1[n]) \]

\[y_2[n] = \cos(x_2[n]) \]

\[a_1 y_1[n] + b y_2[n] = a \cos(x_1[n]) + b \cos(x_2[n]) \]

\[a \cdot \text{LHS} \neq \text{RHS} \]

Hence the system is **non-linear**.
The op depends on present input only. Hence the system is **causal**.

Time-invariant or time-variant?

\[y[n, k] = T[x(n - k)] = \cos(\omega (n - k)) \]

The delayed op is,

\[y[n - k] = \cos(\omega n - k \omega) \]

The system is **time-invariant**.

The system is **static, non-linear and time-invariant**.

\[y[n] = \text{sgn}(\omega n) \]

Solution:

\[
\text{sgn}(\omega n) = \\
\begin{cases}
1 & \text{for } n > 0 \\
-1 & \text{for } n < 0
\end{cases}
\]

Static or **dynamic**?

The op always depends on present input only. Hence the system is **static**.

Linear or **non-linear**?

\[y[n] = T[x(n)] = \text{sgn}(\omega n) \]

For \(x(n)\) \(\Rightarrow\) \(y[n] = T[x(n)] = \text{sgn}(\omega n)\)
\[T(z_{1+n} + b \cdot z_n) = \text{sgn}(z_{1+n}) + b \cdot \text{sgn}(z_n) \]

The weighted sum of \(z \)

\[T(z_{1+n} + b \cdot z_n) = \text{sgn}(z_{1+n}) + b \cdot \text{sgn}(z_n) \]

\[a \cdot y_{1+n} + b \cdot y_n = \text{sgn}(a \cdot z_{1+n} + b \cdot z_n) \]

LHS \neq \text{RHS}

Therefore the \(SLM \) is \text{nonlinear}.

\[\text{causal or noncausal} \]

The \(\text{OLP} \) \(y(n) \) depends on present \(iLP \).

hence the \(SLM \) is \text{causal}.

\[\text{Time invariant or time-variant} \]

\[0 \cdot n, \quad y(n) = \text{sgn}(z_{1+n}) \]

The \(OLP \) due to delayed \(iLP \).

\[y(n+k) = T(z_{1+n-k}) = \text{sgn}(z_{1+n-k}) \]

The delayed \(OLP \)

\[y(n+k) = \text{sgn}(z_{n+k}) \]

\[y(n+k) = y(n+k) \]

Hence the \(SLM \) is \text{time-invariant}.

Hence the \(SLM \) is \text{static, non-linear, causal and time-invariant}.