Deflection of Beams

If a beam carries uniformly distributed load or a point load, the beam is deflected from its original position.

In this chapter, we're going to study the amount by which a beam is deflected from its position.

Deflection & Slope of a Beam Subjected to Uniform Bending Moment

Let:

- \(R \) → Radius of curvature of the deflected beam.
- \(y \) → deflection of beam at the centre.
- \(I \) → Moment of Inertia of beam section.
- \(E \) → Young's modulus for the beam material.
- \(\theta \) → slope of the beam at the end A.
Hence \(\tan \theta = 0 \). When \(\theta \) is in radians,

\[
\frac{dy}{dx} = \tan \theta = 0
\]

\(Ac = Bc = \frac{1}{2} \)

\(Ac \times cB = Dc \times cc' \)

\(\frac{1}{2} \times \frac{1}{2} = (2R-y) \times y \)

\[
\frac{L^2}{4} = 2Ry - y^2
\]

\[
\frac{L^2}{4} = 2Ry
\]

\[y = \frac{L^2}{8} R \]

Bending Moment equation,

\[\frac{M}{J} = \frac{F}{R} \Rightarrow R = \frac{F \times L}{M} \]

\[y = \frac{L^2}{8 \times E} \frac{F}{M} \Rightarrow y = \frac{M^2}{8EJ} \]

Deflexion

\[\sin \theta = \frac{1}{2R} \]

angle \(\theta \) is very small: \(\sin \theta = \theta \)

\[\theta = \frac{1}{2R} \]

\[\theta = \frac{1}{2R} \]

\[\theta = \frac{M \times L}{2EJ} \]
Relation between slope, deflection & radius of curvatures:

Deflection = y

Slope = \frac{dy}{dx}

Bending moment = EI \frac{d^2y}{dx^2}

Shearing force = EI \frac{d^3y}{dx^3}

The rate of loading = EI \frac{d^4y}{dx^4}

Units: In the above eqns. E is taken as N/mm², I is taken in mm⁴, y is taken in mm, M is taken in Nm & x is taken in m.

Methods of determining slope & deflection at a section in a loaded beam:

The following are the important methods for finding the slope & deflection at a section in a loaded beam:

i) Double integration method.

ii) Moment Area method.

iii) Macaulay’s method.
In case of double integration method,

\[M = E I \frac{d^2 y}{dx^2} \text{ (or) } \frac{d^2 y}{dx^2} = \frac{M}{E I} \]

First integration of the above eqn gives

Value of \(\frac{dy}{dx} \) (or, slope). The second integration gives the value of vertical deflection.

The first two methods are used for a static load whereas the third method is used for moving load.

Deflection of SSSB carrying a point load at the end.

\[R_A = R_B = \frac{w}{2} \]

Consider a section \(x \) at a distance \(x \) from \(A \). The bending moment at this section is given by

\[M_x = R_A \times x \]

\[= \frac{w}{2} \times x \times x \]
\[M = E I \frac{d^2 y}{dx^2} \]

\[E I \frac{d^2 y}{dx^2} = \frac{W}{2} \times x. \]

On integration, we get:

\[\int E I \frac{dy}{dx} = \frac{W}{2} \times \frac{x^2}{2} + C_1. \]

Where \(C_1 \) is the constant of integration.

The boundary condition is that at \(x = \frac{L}{2} \),

\[\text{Slope} \left(\frac{dy}{dx} \right) = 0 \] \[\text{As the max. deflection is at the centre, hence slope at the centre will be zero}. \]

Subs. this boundary condition into eqn. we get:

\[0 = \frac{W}{4} \times \left(\frac{L}{2} \right)^2 + C_1. \]

\[C_1 = -\frac{Wl^2}{16}. \]

Substituting the value of \(C_1 \) in eqn.

\[E I \frac{dy}{dx} = \frac{Wx^2}{4} - \frac{Wl^2}{16}. \]

The above eqn. is slope eqn.

Slope is maximum at \(A \). At \(A \) \[x = 0 \] hence slope at \(A \) will be:

\[\int \left(\frac{dy}{dx} \right)_A \, dx = \frac{W}{4} \times 0 - \frac{Wl^2}{16}. \]

\(\left(\frac{dy}{dx} \right)_A \) is represented by \(C_1 \).
\[\sum I = 0 \Rightarrow - \frac{wL^2}{16} \]

\[\theta_A = - \frac{wL^2}{16EI} \quad \Rightarrow \quad \theta_A = \theta_B \]

\[\theta_A = \theta_B = - \frac{wL^2}{16EI} \]

It gives the slope in radians.

Deflection at any point:

\[EI \times y = \frac{W}{J_1} \cdot \frac{x^3}{3} - \frac{wL^2}{16} \cdot x + c_2 \]

\[c_2 \quad \text{a constant of integration} \]

\[EI \times y = 0 - 0 + c_2 \quad (\text{At } x = 0) \]

\[c_2 = 0 \]

\[EI \times y = \frac{Wx^3}{12} - \frac{wL^2}{16} \cdot x \]

Where \(x = \frac{L}{2} \):

\[EI \times y_e = \frac{W}{12} \left(\frac{L}{2} \right)^3 - \frac{wL^2}{16} \frac{L}{2} \]

\[= \frac{W L^3}{96} - \frac{wL^3}{32} \]

\[y_e = - \frac{wL^3}{48EI} \]

Note: This equation is the deflection at any point under the given conditions.
Deflection of a SS8 with an eccentric Pt. Lc.

\[\theta_A = -\frac{W \cdot a \cdot b}{6EI} \]

\[\gamma_c = \frac{W a^2 \cdot b^2}{3EI} \]

\[\gamma_{\text{max}} = \frac{W \cdot b}{9\sqrt{3} \cdot EI} \left(a^2 + 2ab \right)^{3/2} \]

Ph.2

Determine the slope at left support, deflection under the load & max. deflection of a SS8 of length 5m, which is carrying a Pt. load of 5kN at a distance 3m from the left end. Take \(E = 2 \times 10^5 \) N/mm² and \(I = 1 \times 10^8 \) mm⁴.

Solution:

\[5 \text{kN} \]
Length $L = 5 \text{m} = 5000 \text{mm}$

$W = 5 \text{kN} = 5 \times 10^3 \text{N}$

$a = 3 \text{m} = 3000 \text{mm}$

$b = L - a = 5 - 3 = 2 \text{m} = 2000 \text{mm}$

$I = 2 \times 10^5 \text{N/mm}^2$

$I = 1 \times 10^8 \text{mm}^4$

$\theta_a = \frac{-W \cdot a \cdot b}{6 \cdot E \cdot I \cdot L}$

$= \frac{-5000 \times 3000 \times 2000}{6 \times 2 \times 10^5 \times 10^2 \times 5000} \times \frac{(3000 + 2000)}{2 \times 2000}$

$\theta_a = -0.00035 \text{ radians}$

$y_c = \frac{W \cdot a^2 \cdot b^2}{3 \cdot E \cdot I}$

$= \frac{5000 \times 3000^2 \times 2000^2}{3 \times 2 \times 10^5 \times 10^2 \times 5000}$

$= 0.6 \text{mm}$

$y_{\text{max}} = \frac{W \cdot b}{9 \sqrt{3} \cdot E \cdot I \cdot L}$

$= \frac{5000 \times 2000 \left(3000^2 + 2 \times 2000 \times 3000 \right)^{3/2}}{9 \times \sqrt{3} \times 2 \times 10^5 \times 10^2 \times 5000}$
A beam of length 3m and of uniform rectangular cross-section 80 x 100 mm at its ends. It carries a uniformly distributed load of 9 kN/m over the entire length. Determine the width & depth of the beam if maximum permissible bending stress is 75 N/mm² & centre deflection not to exceed 10 mm. E = 1 x 10⁴ N/mm²

\[F_a = \frac{Wl^2}{24EI} \]

\[\sigma = \frac{M}{W} \text{ (for bending)} \]

\[\delta = \frac{5WL^3}{384EI} \]

Load: \[W = 9 \times 10 = 90 kN \]

\[W = 9 \times 10 = 90 kN \]

Contact load: \[W = 9 \times 5 = 45 kN \]

\[W = 9 \times 5 = 45 kN \]

\[E = 1 \times 10^4 N/mm^2 \]

\[I = \frac{bh^3}{12} \]

\[I = \frac{80 \times 100^3}{12} = 6.67 \times 10^8 mm^4 \]

\[M = \frac{90 \times 80}{2} = 3600 kN.mm \]

\[\sigma = \frac{3600}{6.67 \times 10^8} \times 10^4 = 0.53 \text{ kN/mm}^2 \]

\[\sigma = \frac{45 \times 80}{6.67 \times 10^8} \times 10^4 = 0.36 \text{ kN/mm}^2 \]

\[\delta = \frac{5 \times 90 \times 80^3}{384 \times 1 \times 10^4 \times 6.67 \times 10^8} = 0.00068 mm \]

\[\delta = \frac{5 \times 45 \times 80^3}{384 \times 1 \times 10^4 \times 6.67 \times 10^8} = 0.00041 mm \]
\[l d^2 = \frac{28125000 \times 12}{14} = 24107142.85 \text{ mm}^2 \]

\[a = \frac{8.38706 \times 10^7}{24107142.85} = 364.58 \text{ mm} \]

\[b \times (364.58)^2 = 24107142.85 \]

\[b = 181.36 \text{ mm} \]

Macauley's Method:

This method was devised by Mr. M. H. Macaulay & is known as Macauley's method.

This method mainly consists in the special manner in which the bending moment at any section is expressed & in the manner in which the integrations are carried out.

Deflection of a SS8 with an Eccentric Point load:

![Diagram of a SS8 with an eccentric point load]
\[R_k = \frac{W \cdot b}{L} \quad \text{so} \quad R_k = \frac{2W \cdot a}{L} \]

The bending moment at any section A B C D at a distance \(x \) from A is given by:

\[M_n = R_A \cdot x = \frac{W \cdot b \cdot x}{L} \]

\[M_n = R_A \cdot x = W \cdot x \left(x - a \right) \]

\[M_n = \frac{W \cdot b \cdot x}{L} = \frac{W \cdot (x - a)}{L} \]

\[M = \int \int d^2 y / dx^2 \]

\[\int d^2 y / dx^2 = \frac{W \cdot b \cdot x}{L} \left(x - a \right) \]

\[\int dy / dx = \frac{W \cdot b \cdot x^2}{L} + c_1 \]

\[\frac{(x - a)^2}{2} \quad \text{and not} \quad \frac{x^2}{2} = ax \]

Integrating eqn.

\[\int I y = \frac{W \cdot b \cdot x^3}{2} + (c_1 + c_2) \left(-\frac{W (x - a)^3}{2} \right) \]

www.studentsfocus.com
\[\Delta A = - \frac{Wb}{6EI} \left(1^2 - l^2 \right) \]

\[Y_c = - \frac{wa^2 l^2}{3EI} \]

Prob. A beam of length 6m is simply supported at ends and carries two point loads of 48 kN & 40 kN at a distance of 1m & 3m respectively from the left support. Find (i) Deflection under each load.

(ii) Max. deflection and

(iii) The point at which max. deflection occurs.

Take \(E = 2 \times 10^5 \text{ N/mm}^2 \) & \(J = 8.5 \times 10^5 \text{ mm}^4 \)

Soh:

![Diagram of a simply supported beam with loads and reactions](image)

Given:

\[J = 8.5 \times 10^5 \text{ mm}^4 \]

\[R_B x 6 = 48 x 1 + 40 x 3 \]

\[R_B = \frac{168}{6} = 28 \text{ kN} \]

\[R_A = \text{Total load} - R_B = (48 + 40) \text{ kN} \]

\[\frac{EJ}{d^2y}{dx^2} = R_A x \]

\[-48(x - 1), -40(x^2) \]

\[60x \]

\[-48(x - 1), -40(x^2) \]
Integrating above equation.

\[\int \frac{dy}{dx} = \left(\frac{6x^2}{2} + c_1 \right) \left(-\frac{48(x-1)^2}{2} \right) \left(-\frac{40(x-3)^2}{2} \right) \]

\[= 36x^2 + c_1 \left(-24(x-1)^2 \right) \left(-20(x-3)^2 \right). \]

\[\int 2y = 10x^3 + c_1(x+2) \left(-8(x-1)^3 \right) \left(-\frac{20}{3}(x-3)^3 \right). \]

\[C_2 = 0. \]

(iii) at \(x = 6 \) m: \(y = 0. \)

\[0 = 10 \times 6^3 + c_1 \times 6 + 0 - 8(6-1)^3 - \frac{20}{3}(6-3)^3. \]

\[0 = 2160 + 6c_1 - 8 \times 5^3 - \frac{20}{3} \times 3^3. \]

\[C_1 = -163.333. \]

\[\int 2y = 10x^3 - 163.333x \left(-8(x-1)^3 \right) - \frac{20}{3}(x-3)^3. \]

\[\int 2 \cdot y_c = 10 \times 1^3 - 163.333 \times 1. \]

\[= -153.333 \text{ kN m}^3. \]

\[y_c = \frac{-153.333 \times 10^{12}}{2 \times 10^5 \times 85 \times 10^6}. \]

\[= -9.019 \text{ mm}. \]

The negative sign indicates load downward.
Deflection under Second Load

\[\begin{align*}
F_2 : y_2 &= 10 \times 3^3 - 163.33 \times 3 - 8(2 - 1) \\
&= -283.99 \times 10^2 \text{ Nmm}^3
\end{align*} \]

\[y_d = \frac{-283.99 \times 10^2}{2 \times 10^5 \times 85 \times 10^6} = -16.7 \text{ mm} \]

Maximum Deflection:

\[30x^2 + c_1 - 24(x-1)^2 = 0 \]

\[6x^2 + 48x - 187.33 = 0 \]

\[x = \frac{-48 \pm \sqrt{48^2 + 4 \times 6 \times 187.33}}{2 \times 6} \]

\[x = 2.87 \text{ m} \]

\[F_2 y_{\text{max}} = 10 \times 2.87^3 - 163.33 \times 2.87 - 8(2 - 1) \]

\[= 284.67 \text{ kN m}^3 \]

\[= 284.67 \times 10^{12} \text{ Nmm}^3 \]

\[y_{\text{max}} = \frac{-287.67 \times 10^{12}}{2 \times 10^5 \times 85 \times 10^6} \]

\[= -16.745 \text{ mm} \]
Fig. shows a AB carrying some type of loading and subjected to bending moment as shown in Fig.

Let \(R \) = Radius of curvature of deflected part PQ,

\(d\omega \) = Angle subtended by the area \(P, Q, \) at the centre O.

\(M \) = Bending moment at \(P \) & \(Q \).
\[h \omega = e \cdot d \omega \]

\[f(\omega) = d \omega \]

\[d \omega = R \cdot d \theta \]

\[d \theta = \frac{d \omega}{R} \]

\[\frac{M}{I} = \frac{E}{R} \quad \text{(or)} \quad R = \frac{EI}{M} \]

\[d \omega = \frac{dx}{(\frac{EI}{M})} = \frac{M \cdot dx}{EI} \]

\[\Theta = \int \frac{M \cdot dx}{EI} = \frac{1}{EI} \int M \cdot dx \]

\[\Theta_B = \text{Area of B.M dia. } \frac{E}{T} \]

\[\Theta_B - \Theta_A = \text{Area of B.M. } \frac{EI}{EI} \]

\[dy = x \cdot d \theta \]

\[dy = x \cdot \frac{M \cdot dx}{EI} \]

\[y = \int x \cdot \frac{M dx}{EI} \]

\[z = \int_0^L x \cdot \frac{M dx}{EI} \]
\[
\frac{y}{EI} = A \times \frac{A}{E} = A \times \frac{\bar{x}}{E}
\]

where:
- \(A \): Area of B.M dia. b/w A & B.
- \(\bar{x} \): Distance C.G of area A from B.

Mohr's Theorems:

5) The change of slope b/w any two pts is equal to the net area of the B.M dia. b/w those points divided by EI.

6) The total deflection b/w any two pts is equal to the moment of the area of B.M dia. b/w the two pts about the last point.

The Mohr's theorems is conveniently used for following cases:

1. Problems on Cantilevers.
2. Simply supported beams carrying symmetrical loading.
3. Beams fixed at both ends.
slope & deflection of SSB carrying a PI load at C:

Using Morin's theorem:

\[A = \text{Area of B.M diagram between A & \(\frac{c}{2} \)} \]

\[\frac{1}{2} \times \frac{1}{2} \times \frac{WL}{4} = \frac{WL^2}{16} \]

Slope at A (or) \(\theta_A = \frac{WL^2}{EI} \)

\[\theta_A = \frac{A_i}{EI} \]

\[y = \frac{\theta_A x}{EI} \]

\[x = \frac{WL^2}{16} \]

\[y = \frac{WL^2}{16} \times \frac{1}{3} = \frac{WL^3}{48EI} \]
\[
\frac{12.87500}{2.7 \times 200 \times 10^6 \times 800 \times 10^{-4}} \times 10^{-3} = 7.94 \text{mm}
\]

Deflection at D, \(y_0 \):

\[
R_b \times 10 - \frac{1}{2} \times 10 \times \frac{1250}{E I} \times 10 / 3
\]

\[= 7.33 \text{mm}\]

Deflection at B, \(y_0 = 0 \) \(R_b \).

Maxwell's Theorem:

The Maxwell's reciprocal theorem states that:

The work done by the first system of loads due to displacements caused by a second system of loads equals the work done by the second system of loads due to displacements caused by the first system of loads.

Proof:

Let \(\text{Point forces} \mathbf{P}_i, i = 1, 2, \ldots, n \) act on an elastic body constrained in a space. Then the strain energy due to this force system is given by:

\[
U_A = \sum_{i=1}^{n} \frac{1}{2} \mathbf{P}_i \mathbf{S}_i
\]

Where \(\mathbf{S}_i \) are the corresponding deflections.
Let point forces \(P_j \), \(j = 1, 2, \ldots m \) be the new set of point forces. Then:

\[U_B = \sum_{j=1}^{m} \left(P_j \right)_B \delta_j. \]

\[U_A = \frac{1}{2} \sum_{i=1}^{n} \left(P_i \right)_A \left(\delta_i \right)_A. \]

\[U_{A,B} = \sum_{i=1}^{n} \left(P_i \right)_A \left(\delta_i \right)_B. \]

\[U_B = \frac{1}{2} \sum_{j=1}^{m} \left(P_j \right)_B \left(\delta_j \right)_B. \]

\[U = U_A + U_{A,B} + U_B. \]

\[U' = U_B + U_{B,A} + U_A. \]

\[U = U'. \]

\[U_A + U_{A,B} + U_B = U_B + U_{B,A} + U_A. \]

\[U_{A,B} = U_{B,A}. \]

\[\sum_{i=1}^{n} \left(P_i \right)_A \left(\delta_i \right)_B = \sum_{j=1}^{m} \left(P_j \right)_B \left(\delta_j \right)_A. \]