Unit 1

Introduction:

- Communication medium => Wire Conducting, Cable, or Free Space
 - New medium is => Optic Cable (Fibre)

→ They carry the information in form of light beam from one place to another.

→ The freq of optical spectrum: 3×10^{14} Hz

→ Fiber optic cable
 - Information carrying capability
 - wider bandwidth
 - Tx capacity of optic fiber link: $B \times L$

 B => Tx bit rate

 L => Repeater spacing

→ Lower loss => less signal attenuation over long distance

→ Light weight => lighter than copper cables

→ Security => cannot be 'eavesdropped' easily.
* Without repeaters, we can Tx with max data rate of 56b/s over a distance of 111km.

* Low cost & maintenance

Fiber optics technology involves the emission, transmission, and detection of light.

* Element of optical fiber Tx link:
 a) Light source
 b) Light signal Tx
 c) Optical fiber
 d) Photodetecting receiver

Fiber & cable splices
Connectors
Receivers
Beam splitters
Optical amplifiers

a) Reflection:

\[\theta_1 = \theta_2 \]

\(\theta_1 \) = angle of incidence
\(\theta_2 \) = angle of reflection

\(\theta_1 = \theta_2 \) Law of reflection

b) Refraction:

b) Refraction:

\[\text{Bending of light} \]

Refraction Index: \(n = \text{Amount of refraction} \)

\[n = \frac{\text{Speed of light in air}}{\text{Speed of light in substance}} \]
Values of n (refractive index)
- Air = 1.00
- Water = 1.33
- Olive glass = 1.45
- Diamond = 2.42

Snell's Law:

$\theta_1 \sin \theta_1 = n_2 \sin \theta_2$

$n_1 > n_2$

Snell's law

Critical angle: θ_c angle of incidence that causes the refracted light to travel along the interface below two different media.

Using Snell's Law

$\sin \theta_1 = \frac{n_2}{n_1} \sin \theta_2$

with $\theta_2 = 90^\circ$, θ_1 becomes θ_c Critical angle

$\sin \theta_c = \frac{n_2}{n_1}$

$\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right)$

Total internal reflection:

θ_1 when angle of incidence θ_1 is greater than θ_c

Condition of TIR is satisfied.

Then total light will be reflected back $\theta_1 = \theta_2$
\[\phi_i < \phi_c \]

\[\phi_i = \phi_c \]

\[\phi_i > \phi_c \]

\[\Rightarrow \text{it occurs only in material in velocity of light slower than air.} \]

* Numerical Aperture (NA)

\[NA = \sin \theta_{in} \]

\(\theta_{in} \rightarrow \text{Acceptance angle (degrees)} \)

* Acceptance angle:

\(\theta_{in} \rightarrow \text{max angle to the fiber axis at which light may enter the fiber axis in order to be propagated.} \)

\[\theta_{in(max)} = \sin^{-1} \left(\frac{\sqrt{n_f^2 - n_i^2}}{n_o} \right) \]

\(n_o = 1 \)

\[\theta_{in(max)} = \sin^{-1} \left(\frac{\sqrt{n_f^2 - n_i^2}}{n_i} \right) \]

\(\frac{n_f}{n_i} = 1 \)

\[\frac{n_f}{n_i} = \sqrt{n_f^2 - n_i^2} \]

\[\left(n_f = n_i \right) \]

\[\delta n_i = n_i - n_e \]

\[\Delta n_i = n_i - n_e \]

\[\Delta = n_i^2 - n_e^2 \]

\[\frac{\Delta n_i}{2n_i} = \frac{n_i - n_e}{n_i} \]

\[\Delta n_i = n_i - n_e \]

\[\frac{n_i^2 - n_e^2}{2n_i} \]
Types of rays:

- Meridional ray
- Skew ray
- Bound ray
- Unbound ray

Ray optics representation of skew rays:

The angle of acceptance is known as maximum possible angle of launching of a light ray that is accepted by the fiber.

Numerical Aperture: \((NA) \)

By Snell's Law

\[
\sin \alpha = \frac{n_1 \sin \theta}{n_2} \tag{1}
\]

For figure \(\theta = \frac{\pi}{2} - \phi \)

Sub \(\phi \) in \(\text{eqn}(1) \)

Basic trigonometric ratio:

\[
\cos \theta_c = \sqrt{1 - \sin^2 \theta_c} \]

Apply Snell's Law

we get,

\[
\sin \theta_c = \frac{n_2}{n_1} \tag{2}
\]

\[
\cos \theta_c = \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2} \tag{3}
\]

Sub \(\cos \theta_c \) in \(\text{eqn}(4) \)

\[
\sin \alpha = \sqrt{n_1^2 - n_2^2} \tag{4}
\]

So by Snell's Law

\[
\sin \alpha = n_1 \sin \theta \tag{1}
\]

For figure \(\theta = \frac{\pi}{2} - \phi \)

Sub \(\phi \) in \(\text{eqn}(1) \)
Skew rays:

- Skew rays are not through the fiber axis.
- It follows a helical path in a fiber.
- They will not lie in a single plane, more difficult to track.

* great power loss arises when skew rays are included in the analyses, they are trapped in the fiber and actually become rays.

\[n_0 \rightarrow \text{it get attenuates as the light travels along the optical waveguide.} \]

To find ray path AB:

* Acceptance condition

\[n_0 \sin \theta \cos \gamma = (n_1^2 - n_2^2)^{1/2} \cdot NA \]

Electromagnetic wave Theory:

a) EM waves:

- It is to obtain improved model for the propagation of light in fiber.
- Basic is from Maxwell's Equation.
Curl Equation:
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{H} = \frac{\mathbf{J}}{\varepsilon_0} \]

Divergence Condition:
\[\nabla \cdot \mathbf{D} = \rho \] [no free charges]
\[\nabla \cdot \mathbf{B} = 0 \] [no free poles]

Relationship of \(\mathbf{D}, \mathbf{B}, \mathbf{E}, \mathbf{H} \):
\[\mathbf{D} = \varepsilon_0 \mathbf{E} \] (i)
\[\mathbf{B} = \mu_0 \mathbf{H} \] (ii)
\[\varepsilon \rightarrow \text{dielectric permittivity} \]
\[\mu \rightarrow \text{magnetic permeability of the medium} \]

Sub for \(\mathbf{D} + \mathbf{B} \):
\[\nabla \times (\nabla \times \mathbf{E}) = \mu_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{H}) = -\varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \]
\[\nabla \times (\nabla \times \mathbf{H}) = -\varepsilon_0 \frac{\partial \mathbf{B}}{\partial t} \]

Phase velocity in dielectric medium:
\[v_p = \frac{1}{\mu_0 \varepsilon_0 \sqrt{\mu_0 \varepsilon_0}} = \frac{1}{(\mu_0 \varepsilon_0 \varepsilon_\mu \varepsilon_0)^{1/2}} \]

Velocity of free space:
\[c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \]
* Modes in a planar guide:

A planar guide simple form of an optical waveguide.

\[\beta_z = n_z \frac{\omega}{c} \]

\[\beta_x = n_x k \sin \theta \]

\[n_z > n_x \Rightarrow \beta_z = n_z k \cos \theta \]

Ray propagation in a plane dielectric guide.

* Phase velocity: \(v_p \)

A monochromatic light wave propagates along a guide in the \(z \) direction; these points of constant phase travel at a phase velocity \(v_p \):

\[v_p = \frac{\omega}{k} \]

\[\beta = \frac{2\pi}{\lambda} \]

is given by

\[\lambda = \frac{\omega}{k} \]

\(\omega = \) angular frequency

\(k = \) propagation constant
Group velocity (V_g) = \frac{\partial \omega}{\partial k}

\Rightarrow group of waves with similar frequencies propagate

\Rightarrow This does not travel in V_p

\Rightarrow but in group velocity (V_g)

Envelope of wave package (V_g).

Propagation constant (β)

$\beta = \eta \cdot \frac{2\pi}{\lambda}$

Consider \eta \rightarrow infinite medium of refractive index

$V_p = \frac{\omega}{k} = \frac{\omega}{n, \omega \frac{c}{\omega}} = \omega \times \frac{c}{n, \omega}$

$V_p = \frac{c}{n_1}$

group velocity $V_g = \frac{d\omega}{dp} \cdot \frac{dx}{dx}$

$V_g = \frac{c}{V_g}$

\Rightarrow group index of guide.
Single Mode Fibers:

designed to allow only one mode of propagation.

- Diameter of fiber 8-12 μm

- Small index difference between the core and cladding with freq V ~ 2.4

LP01 mode propagation possible over the range 0 ≤ V ≤ 2.405

Mode Field Diameter:

- Take into account the V dependent field penetration into the fibre cladding

* Field distribution across the Air Fiber

\[E(r) = E_0 \exp \left(-\frac{r^2}{W_0^2} \right) \]

- \(r \) → radius of field distribution

- \(E_0 \) → field at zero radius

- \(W_0 \) → Width of Optical Field Distribution

Propagation modes in Sym Fibers:

- Two independent degenerate modes

Propagate within the Sym Fibers. They are similar

Polarization Planes are orthogonal.
Birefringence:

Polarization modes propagate with different phase velocities, and the difference is their effective refractive indices called Birefringence.

\[B_p = n_y - n_x \]

\[\beta = k_0 (n_y - n_x) \] \(\rightarrow \) \[k_0 = \frac{2\pi}{\lambda} \] \(\text{Free Space Propagation} \)

Fiber beat length:

\[L_p = \frac{2\pi}{\beta} \]

Sub equation in 2:

\[L_p = \frac{\lambda}{n_y - n_x} \]

\[L_p = \frac{\lambda}{B_p} \]
Cylindrical wave guide:

- Has 2 dimensions: TE_{lm} + TM_{lm} nodes for hybrid modes: \(\text{HE}_{lm} \cdot \text{EH}_{lm} \)

Scalar wave equation:

\[
\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \phi^2} + \left(\mu^2 \kappa^2 - \beta^2 \right) \psi = 0
\]

\(\psi \) \(\rightarrow \) field (\(E \) or \(H \))

\(\mu, n \) \(\rightarrow \) refractive index of core

\(\beta \) \(\rightarrow \) propagation constant

\(r, \phi \) \(\rightarrow \) cylindrical coordinates

\(\rightarrow \) \(\beta \) lies in range:

\(n_1 \kappa < \beta < n_2 \kappa \)

\(n_0 \) \(\rightarrow \) refractive index of cladding.

\(\text{LP}_{01}, \text{HE}_{11} \)

\(\text{TE}_{11}, \text{HE}_{11} \)

\(\text{LP}_{11}, \text{TM}_{01} \)

\(\text{HE}_{21} \)
U, W are the eigen values in core + cladding

$$U = a \left(n_1^2 k^2 - \beta^2 \right)^{1/2}$$

$$W = a \left(\beta^2 - n_2^2 k^2 \right)^{1/2}$$

Normalized frequency (V)

$$V = (U^2 + W^2)^{1/2}$$

$$V = a k \left[n_1^2 - n_2^2 \right]^{1/2}$$

$$V = \frac{2 \pi}{\lambda} a (n_1^2)$$

$$V = \frac{2 \pi}{\lambda} a n_1 \left(2 \Delta \right)^{1/2}$$

Normalized propagation constant (b)

$$b = 1 - \frac{U^2}{V^2} \approx \frac{(B/k)^2 - n_2^2}{n_3^2 - n_2^2}$$

$$b = \frac{(B/k)^2 - n_2^2}{2 n_1^2 \Delta}$$
Weak Guidance Approximation:

Field matching condition at boundary

\[
\frac{U J_{k_{\text{eff}}} (u)}{J_{1} (u)} = i \omega \frac{K_{k_{\text{eff}}} (u)}{k_{1} (u)}
\]

Leaky modes:

- the fields are confined partially in the fiber core and attenuated as they propagate along fiber length due to radiation + tunnel effect.
Introduction of Wave model

- Breaking light as transverse electromagnetic wave

* Different TE modes in an optical fiber:

\[\frac{2 \pi \sin \theta}{\lambda} + \frac{\gamma}{\lambda} = m \] \((m = 0, 1, 2, 3, \ldots) \)

* Graded Index Optical fiber:

* Cylindrical Co-ordinate System:

\((r, \phi, z) \) \(\rightarrow n_z \)

\(r \rightarrow \text{Radial distance of the point from axis of fiber} \)

\(\phi \rightarrow \text{Angle b/w plane contain pt and reference plane} \)
* Basic Wave Equation *

Dielectric constant of
the core, \(\varepsilon_1 = \varepsilon_0 n_1^2 \)

Dielectric constant of
the cladding \(\varepsilon_2 = \varepsilon_0 n_2^2 \)

Maxwell's equation for electric + magnetic

\[\nabla \cdot \mathbf{D} = 0 \quad - (a) \quad \mathbf{D} \quad \text{Electric displacement vector} \]

\[\nabla \cdot \mathbf{B} = 0 \quad - (b) \quad \mathbf{B} \quad \text{Magnetic flux density} \]

\[\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t} \quad - (c) \quad \mathbf{B} = \mu_0 \mathbf{H} \]

\[\nabla \times \mathbf{H} = - \frac{\partial \mathbf{D}}{\partial t} \quad - (d) \quad \mathbf{D} = \varepsilon_0 \mathbf{E} \]

Step 1 Sub \(\mathbf{D} = \varepsilon_0 \mathbf{E} \) in eq (a) [de-coupling]

\[\nabla \cdot (\varepsilon_0 \mathbf{E}) = 0 \]

\[\nabla \cdot \mathbf{E} = 0 \quad [\varepsilon \text{ is independent of space}] \]

From eqn (b)

\[\nabla \cdot \mathbf{H} = 0 \quad \text{Since fiber is dielectric} \]

Step 2 \(\rightarrow \) Curl of each equation + Sub each eqn with other

Curl of eqn (c)

\[\nabla \times \nabla \times \mathbf{E} = - \nabla \times \frac{\partial \mathbf{D}}{\partial t} \]

\[\nabla \times \nabla \times \mathbf{E} = - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \]

Sub \(\nabla \times \mathbf{E} \) from eqn (c)

\[\nabla^2 \mathbf{E} = \varepsilon_0 \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} \]

Add for eqn (d)

\[\nabla \times \mathbf{H} = \mu_0 \mathbf{E} \frac{\partial^2 \mathbf{H}}{\partial t^2} \]
Waveguide Equation:

Cylindrical co-ordinate system \(r, \phi, z \):

\[\text{wave are to propagate along the } Z \text{-axis} \]

Functional dependence:

\[E = E_0 (r, \phi) e^{j(\omega t - kz)} \quad (1) \]

\[H = H_0 (r, \phi) e^{j(\omega t - kz)} \quad (2) \]

Equations 1 and 2 are due to Maxwell Equations.

Step 1

\[\nabla \times E = -\frac{\partial B}{\partial t} \quad (6) \]

\[\frac{1}{r} \left(\frac{\partial}{\partial \rho} \left(\rho E_\rho \right) - \frac{1}{r} \frac{\partial}{\partial \phi} \left(\rho E_\phi \right) \right) = -j \omega \mu H_\phi \quad (4) \]

\[\nabla \times H = \frac{\partial D}{\partial t} \quad (6) \]

\[\frac{1}{r} \left(\frac{\partial}{\partial \rho} \left(\rho H_\rho \right) - \frac{1}{r} \frac{\partial}{\partial \phi} \left(\rho H_\phi \right) \right) = -j \omega \varepsilon E_\phi \quad (4) \]

Step 2

From equations \(\nabla \times E = \frac{\partial D}{\partial t} \)

\[\frac{1}{r} \left(\frac{\partial}{\partial \rho} \left(\rho E_\rho \right) + \frac{1}{r} \frac{\partial}{\partial \phi} \left(\rho E_\phi \right) \right) = j \omega \mu H_\phi \quad (6) \]

\[\frac{1}{r} \left(\frac{\partial}{\partial \rho} \left(\rho H_\rho \right) - \frac{1}{r} \frac{\partial}{\partial \phi} \left(\rho H_\phi \right) \right) = j \omega \varepsilon E_\phi \quad (6) \]

Step 3

\[E_\rho = -\frac{i}{q_e} \left(\frac{\beta}{r} \frac{\partial E_\phi}{\partial r} + \frac{\mu \omega}{r} \frac{\partial H_\rho}{\partial \phi} \right) \quad (3) \]

\[E_\phi = -\frac{i}{q_e} \left(\frac{\beta}{r} \frac{\partial E_\rho}{\partial \phi} - \frac{\mu \omega}{r} \frac{\partial H_\rho}{\partial r} \right) \quad (4) \]
\[A_y = \frac{-i}{q^2} \left(\frac{\partial}{} \frac{\partial E_z}{\partial y} \right) \]

\[A_y = \frac{-\frac{\partial}{\partial y} \left(\frac{\partial B_r}{\partial x} - \frac{\partial B_z}{\partial y} \right)}{q^2} \left(\frac{\partial^2 B_z}{\partial x^2} - \frac{\partial B_x}{\partial y} \right) \]

\[H_0 = -\frac{i}{q^2} \left(\frac{\partial H_z}{\partial y} + \omega e \frac{\partial E_z}{\partial y} \right) \]

\[q^2 = \omega^2 \mu_0 - \beta^2 = k^2 - \beta^2 \]

Step 4 \(\Rightarrow \) Sub 5 + 6 in equation (C)

\[\frac{\partial^2 E_z}{\partial y^2} + \frac{1}{r} \frac{\partial E_z}{\partial y} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \phi^2} + q^2 E_z = 0 \]

Step 5 \(\Rightarrow \) Sub 3 + 4 in equation (C)

\[\frac{\partial^2 H_z}{\partial y^2} + \frac{1}{r} \frac{\partial H_z}{\partial y} + \frac{1}{r^2} \frac{\partial^2 H_z}{\partial \phi^2} + q^2 H_z = 0 \]

- x -

if \(E_z = 0 \) \(\Rightarrow \) modes are called TE

\(H_z = 0 \) \(\Rightarrow \) TE \(\Rightarrow \) TH

\(E_z + H_z \) is non-zero \(\Rightarrow \) hybrid mode

\(H_z \Rightarrow HE \)

\(E_z \Rightarrow EH \)

\(\rightarrow \text{hybrid mode} \)
Single-mode fibers:

- Allow only one mode to propagate
 - Other modes will be absorbed
- By reducing core-diameter
- Core-diameter will be selected according as V-number is less than 2.4
- Index difference will be small.

a) Mode Field Diameter: \[[\text{MFD}] \]

- Geometric distribution of light in the propagation mode.

\[\text{MFD} = 2W_0 = 2 \left[\sqrt{\frac{\int_0^\infty E^2(y) y^2 dy}{\int_0^\infty E^2(y) y dy}} \right]^\frac{1}{2} \]

\[E(y) = E_0 \exp \left(\frac{y^2}{W_0^2} \right) \]

Where,

- \(2W_0 = \text{Spot Size = Full Width of the Far-Field distribution} \)
- \(y \rightarrow \text{radius} \)
- \(E_0 \rightarrow \text{Field at Zero radius} \)
b) Propagation Modes in SM Fiber:

- Two independent, degenerate propagation modes
- Very similar, polarization planes are orthogonal
- Horizontal (H) and Vertical (V) polarization

* Birefringence *

a) Ideal fiber ⇒ Perfect rotational symmetry
 \(k_x = k_y \)

b) Practically \(k_x \neq k_y \)
 \(\rightarrow \) Lateral stress, non-circular cores

The mode propagate with different phase velocity and difference \(\beta \) of their effective refractive indices is called fiber birefringence \((B_f) \)

\[
B_f = n_y - n_x
\]

\[
\beta = k_0 \left(n_y - n_x \right)
\]

\[
k_0 = \frac{2\pi}{\lambda}
\]
Fiber Beat Length: \(L_p \)

\[L_p = \frac{2\pi}{\beta} \]

\[L_p = \frac{\lambda}{\beta} \]

V-number [Normalized Frequency]

This determines how many modes a fiber can support.

\[V = \frac{2\pi a}{\lambda} \left(\frac{n_1^2 - n_2^2}{2} \right)^{1/2} \] \text{cut-off pt when } V \leq 2.405

\[V = \frac{2\pi a}{\lambda} \cdot NA \]

Total no of modes Supported in a Fiber

\[M = \frac{1}{2} \left(\frac{2\pi a}{\lambda} \right)^2 \left(n_1^2 - n_2^2 \right) \]

\[M = \frac{V^2}{2} \]

a) At cut-off pt => optical power of mode is residing at cladding.

b) Far from cut-off pt => low fractional of avg power in cladding.
\[
\frac{P_{\text{clad}}}{P} = \frac{4}{3JM}
\]

\(P\rightarrow\) total optical power in a fiber

Note:

Power flow of cladding decreases as \(V\)-number increases.

\[
V_p \ (\text{phase velocity}) = \frac{\omega}{k}
\]

\[
V_g \ (\text{group velocity}) = \frac{\partial \omega}{\partial k}
\]

Modes in planar guide:

\[AB = S_1\]
\[CD = S_2\]

Phase front of downward travelling wave

Phase front of upward travelling wave
According to ray theory, allow any rays at angle φ greater than φ_c.

But interference effect by certain discrete angles greater than or equal to φ_c.

In diagram, the ray incident at material at angle Θ:

$$\Theta = \frac{\pi}{2} - \varphi_c$$

\Rightarrow wave travels through the material will undergo (Δ) phase shift:

$$\Delta = k_s \cdot s = n_1 \cdot k_s = n_1 \cdot \frac{2\pi s}{\lambda}$$

s = distance the wave has traveled in material.

1) From pt A to pt B, Ray 1,

$$S_1 = \frac{d}{\sin \Theta}, \ 2 \text{ phase change (8)}$$

To determine its phase change:

$$AD = \left(\frac{d}{\tan \Theta} \right) - d \tan \Theta \quad [\text{distance from A to D}].$$

$$S_2 = \frac{AD}{\cos \Theta} = \left(\cos^2 \Theta - \sin^2 \Theta \right) \frac{d}{\sin \Theta} \quad [\text{distance from C to D}].$$

The requirement for wave propagation:

$$\frac{2\pi n_1}{\lambda} (S_1 - S_2) + 2\delta = 2\pi m.$$
Sub $S_1 + S_2$ in Equ. 0

$$\frac{2\pi n}{\lambda} \left\{ \frac{d}{\sin \theta} - \left[\frac{(\cos^2 \theta - \sin^2 \theta) d}{\sin \theta} \right]^2 \right\} + 2\delta = 2\pi m$$

$$\sin \phi = \frac{2\pi n d \sin \theta}{\lambda} + \delta = \pi m$$

Phase shift (δ) is given by

$$\delta = -2 \arctan \left[\frac{\sqrt{\cos^2 \theta - \left(\frac{n_2^2}{n_1^2} \right)}}{\sin \theta} \right]$$

$$\frac{2\pi n d \sin \theta}{\lambda} = \pi m = 2 \arctan \left[\frac{\sqrt{\cos^2 \theta - \left(\frac{n_2^2}{n_1^2} \right)}}{\sin \theta} \right]$$

$$\tan \left(\frac{\pi n d \sin \theta}{\lambda} - \frac{\pi m}{2} \right) = \left[\frac{\sqrt{n_2^2 \cos^2 \theta - n_2^2}}{n_1 \sin \theta} \right]$$

Note:

Only waves that have those angles θ which satisfy the condition will propagate in the d wave guide.