PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

1. To enable graduates to pursue higher education and research, or have a successful career in industries associated with Computer Science and Engineering, or as entrepreneurs. To ensure that graduates will have the ability and attitude to adapt to emerging technological changes.

PROGRAM OUTCOMES POs:

Engineering Graduates will be able to:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OBJECTIVES (PSOs)

To analyze, design and develop computing solutions by applying foundational concepts of Computer Science and Engineering.

To apply software engineering principles and practices for developing quality software for scientific and business applications.

To adapt to emerging Information and Communication Technologies (ICT) to innovate ideas and solutions to existing/novel problems.

Mapping of POs/PSOs to PEOs

<table>
<thead>
<tr>
<th>Contribution</th>
<th>1: Reasonable</th>
<th>2: Significant</th>
<th>3: Strong</th>
</tr>
</thead>
</table>

2
<table>
<thead>
<tr>
<th>PEs</th>
<th>PEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Graduates will pursue higher education and research, or have a successful career in industries associated with Computer Science and Engineering, or as entrepreneurs.</td>
<td>2. Graduates will have the ability and attitude to adapt to emerging technological changes.</td>
</tr>
<tr>
<td>1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</td>
<td>3</td>
</tr>
<tr>
<td>2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.</td>
<td>3</td>
</tr>
<tr>
<td>3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.</td>
<td>3</td>
</tr>
<tr>
<td>4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</td>
<td>3</td>
</tr>
<tr>
<td>5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.</td>
<td>2</td>
</tr>
<tr>
<td>6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.</td>
<td>2</td>
</tr>
</tbody>
</table>
7. **Environment and sustainability:**
Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

| 2 | 1 |

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

| 3 | 1 |

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

| 3 | 2 |

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

| 3 | 2 |

11. **Project management and finance:**
Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

| 2 | 2 |

12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

| 1 | 3 |

PSOs

1. Analyze, design and develop computing solutions by applying foundational concepts of computer science and engineering.

| 3 | 1 |

2. Apply software engineering principles and practices for developing quality software for scientific and business applications.

| 3 | 1 |

3. Adapt to emerging information and communication technologies (ICT) to innovate ideas and solutions to existing/novel problems.

| 1 | 3 |
MAPPING OF COURSE OUTCOMES WITH PROGRAMME OUTCOMES

A broad relation between the Course Outcomes and Programme Outcomes is given in the following table.

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Programme Outcome (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
</tr>
<tr>
<td>Communicative English</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics - I</td>
<td>√</td>
</tr>
<tr>
<td>Engineering Physics</td>
<td></td>
</tr>
<tr>
<td>Engineering Chemistry</td>
<td>√</td>
</tr>
<tr>
<td>Problem Solving and Python Programming</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>√</td>
</tr>
<tr>
<td>Problem Solving and Python Programming Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Physics and Chemistry Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
</tr>
<tr>
<td>Technical English</td>
<td></td>
</tr>
<tr>
<td>Engineering Mathematics II</td>
<td>√</td>
</tr>
<tr>
<td>Physics for Information Science</td>
<td>√</td>
</tr>
<tr>
<td>Basic Electrical, Electronics and Measurement Engineering</td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Engineering</td>
<td>√</td>
</tr>
<tr>
<td>Programming in C</td>
<td>√</td>
</tr>
<tr>
<td>Engineering Practices Laboratory</td>
<td></td>
</tr>
<tr>
<td>C Programming Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>1</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td>√</td>
</tr>
<tr>
<td>Digital Principles and Design</td>
<td>√</td>
</tr>
<tr>
<td>Data Structures</td>
<td>√</td>
</tr>
<tr>
<td>Object Oriented Programming</td>
<td>√</td>
</tr>
<tr>
<td>Communication Engineering</td>
<td>√</td>
</tr>
<tr>
<td>Data Structures Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Object Oriented Programming Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Digital Systems Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Interpersonal Skills/Listening &Speaking</td>
<td></td>
</tr>
<tr>
<td>Probability and Queueing Theory</td>
<td>√</td>
</tr>
<tr>
<td>Computer Architecture</td>
<td>√</td>
</tr>
<tr>
<td>Database Management Systems</td>
<td>√</td>
</tr>
<tr>
<td>Design and Analysis of Algorithms</td>
<td>√</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>√</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>√</td>
</tr>
<tr>
<td>Database Management Systems Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Operating Systems Laboratory</td>
<td>√</td>
</tr>
<tr>
<td>Advanced Reading and Writing</td>
<td>√</td>
</tr>
<tr>
<td>YEAR III</td>
<td>SEMESTER V</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Algebra and Number Theory</td>
</tr>
<tr>
<td></td>
<td>Computer Networks</td>
</tr>
<tr>
<td></td>
<td>Microprocessors and Microcontrollers</td>
</tr>
<tr>
<td></td>
<td>Theory of Computation</td>
</tr>
<tr>
<td></td>
<td>Object Oriented Analysis and Design</td>
</tr>
<tr>
<td></td>
<td>Open Elective I</td>
</tr>
<tr>
<td></td>
<td>Microprocessors and Microcontrollers Laboratory</td>
</tr>
<tr>
<td></td>
<td>Object Oriented Analysis and Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>Networks Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER VI</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Programming</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mobile Computing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Compiler Design</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Distributed Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Professional Elective I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Programming Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mobile Application Development Laboratory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mini Project</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Professional Communication</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR IV</th>
<th>SEMESTER VII</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Principles of Management</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cryptography and Network Security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cloud Computing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Open Elective II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective II</td>
<td>Professional Elective III</td>
<td>Cloud Computing Laboratory</td>
<td>Security Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER VIII</th>
<th>Professional Elective IV</th>
<th>Professional Elective V</th>
<th>Project Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SEM</td>
<td>COURSE TITLE</td>
<td>PROGRAMME OUTCOME (PO)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>VI</td>
<td>Data Warehousing and Data Mining</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Software Testing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Embedded Systems</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Agile Methodologies</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Graph Theory and Applications-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Intellectual Property Rights</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Digital Signal Processing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>VII</td>
<td>Big Data Analytics</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Machine Learning Techniques</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Computer Graphics and Multimedia</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Software Project Management</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Internet of Things</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Service Oriented Architecture</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Total Quality Management</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Multi-core Architectures</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>and Programming</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Human Computer Interaction</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>C# and .Net Programming</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Wireless Adhoc and Sensor Networks</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Advanced Topics on Databases</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Foundation Skills in Integrated Product Development</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Human Rights</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Disaster Management</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>VIII</td>
<td>Digital Image Processing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Social Network Analysis</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Information Security</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Software Defined Networks</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Cyber Forensics</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Soft Computing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Professional Ethics in Engineering</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Information Retrieval Techniques</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Green Computing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>GPU Architecture and Programming</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Natural Language Processing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Parallel Algorithms</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Speech Processing</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Nano Science</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
SEMESTER I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8151</td>
<td>Engineering Mathematics - I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL

| | | | | | 31 | 19 | 0 | 12 | 25 |

SEMESTER II

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8251</td>
<td>Engineering Mathematics - II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8252</td>
<td>Physics for Information Science</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BE8255</td>
<td>Basic Electrical, Electronics and Measurement Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CS8251</td>
<td>Programming in C</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8261</td>
<td>C Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL

| | | | | | 28 | 20 | 0 | 8 | 24 |
SEMESTER III

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8351</td>
<td>Discrete Mathematics</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CS8351</td>
<td>Digital Principles and System Design</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>CS8391</td>
<td>Data Structures</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8392</td>
<td>Object Oriented Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC8395</td>
<td>Communication Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CS8381</td>
<td>Data Structures Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CS8383</td>
<td>Object Oriented Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8382</td>
<td>Digital Systems Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8381</td>
<td>Interpersonal Skills/Listening &Speaking</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>17</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8402</td>
<td>Probability and Queueing Theory</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CS8491</td>
<td>Computer Architecture</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8451</td>
<td>Design and Analysis of Algorithms</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8493</td>
<td>Operating Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CS8494</td>
<td>Software Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CS8481</td>
<td>Database Management Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8461</td>
<td>Operating Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>19</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
SEMESTER V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8551</td>
<td>Algebra and Number Theory</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CS8591</td>
<td>Computer Networks</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC8691</td>
<td>Microprocessors and Microcontrollers</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8501</td>
<td>Theory of Computation</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8592</td>
<td>Object Oriented Analysis and Design</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective I</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EC8681</td>
<td>Microprocessors and Microcontrollers Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8582</td>
<td>Object Oriented Analysis and Design Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>CS8581</td>
<td>Networks Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
<td>25</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CS8651</td>
<td>Internet Programming</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8691</td>
<td>Artificial Intelligence</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8601</td>
<td>Mobile Computing</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8602</td>
<td>Compiler Design</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>CS8603</td>
<td>Distributed Systems</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective I</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CS8661</td>
<td>Internet Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CS8662</td>
<td>Mobile Application Development Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>CS8611</td>
<td>Mini Project</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>32</td>
<td>18</td>
<td>0</td>
<td>14</td>
<td>25</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MG8591</td>
<td>Principles of Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8792</td>
<td>Cryptography and Network Security</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8791</td>
<td>Cloud Computing</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Open Elective II</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective II</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CS8711</td>
<td>Cloud Computing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>IT8761</td>
<td>Security Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>18</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Professional Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CS8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>6</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 185
Humanities and Social Sciences (HS)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MG8591</td>
<td>Principles of Management</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Basic Sciences (BS)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8151</td>
<td>Engineering Mathematics I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>MA8251</td>
<td>Engineering Mathematics II</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>PH8252</td>
<td>Physics for Information Science</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MA8351</td>
<td>Discrete Mathematics</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>MA8402</td>
<td>Probability and Queueing Theory</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>MA8551</td>
<td>Algebra and Number Theory</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering Sciences (ES)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Category</th>
<th>Contact Periods</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>BE8255</td>
<td>Basic Electrical, Electronics and Measurement Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>CS8351</td>
<td>Digital Principles and System Design</td>
<td>ES</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>EC8395</td>
<td>Communication Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CS8382</td>
<td>Digital Systems Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sl. No</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>CS8251</td>
<td>Programming in C</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8261</td>
<td>C Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CS8391</td>
<td>Data Structures</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CS8392</td>
<td>Object Oriented Programming</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CS8381</td>
<td>Data Structures Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>CS8383</td>
<td>Object Oriented Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CS8491</td>
<td>Computer Architecture</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>CS8492</td>
<td>Database Management Systems</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>CS8451</td>
<td>Design and Analysis of Algorithms</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>CS8493</td>
<td>Operating Systems</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11.</td>
<td>CS8494</td>
<td>Software Engineering</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12.</td>
<td>CS8481</td>
<td>Database Management Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>13.</td>
<td>CS8461</td>
<td>Operating Systems Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>14.</td>
<td>CS8591</td>
<td>Computer Networks</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15.</td>
<td>EC8691</td>
<td>Microprocessors and Microcontrollers</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>16.</td>
<td>CS8501</td>
<td>Theory of Computation</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>17.</td>
<td>CS8592</td>
<td>Object Oriented Analysis and Design</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>18.</td>
<td>EC8681</td>
<td>Microprocessors and Microcontrollers Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>19.</td>
<td>CS8582</td>
<td>Object Oriented Analysis and Design Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>20.</td>
<td>CS8581</td>
<td>Networks Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>21.</td>
<td>CS8651</td>
<td>Internet Programming</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>22.</td>
<td>CS8691</td>
<td>Artificial Intelligence</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>23.</td>
<td>CS8601</td>
<td>Mobile Computing</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>24.</td>
<td>CS8602</td>
<td>Compiler Design</td>
<td>PC</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>25.</td>
<td>CS8603</td>
<td>Distributed Systems</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>26.</td>
<td>CS8661</td>
<td>Internet Programming Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>27.</td>
<td>CS8662</td>
<td>Mobile Application Development Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>28.</td>
<td>CS8792</td>
<td>Cryptography and Network Security</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>29.</td>
<td>CS8791</td>
<td>Cloud Computing</td>
<td>PC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>30.</td>
<td>CS8711</td>
<td>Cloud Computing Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>31.</td>
<td>IT8761</td>
<td>Security Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVES (PE)

SEMESTER VI
ELECTIVE - I

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8075</td>
<td>Data Warehousing and Data Mining</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>IT8076</td>
<td>Software Testing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>IT8072</td>
<td>Embedded Systems</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8072</td>
<td>Agile Methodologies</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8077</td>
<td>Graph Theory and Applications-</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>IT8071</td>
<td>Digital Signal Processing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE8075</td>
<td>Intellectual Property Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII
ELECTIVE - II

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8091</td>
<td>Big Data Analytics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8082</td>
<td>Machine Learning Techniques</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8092</td>
<td>Computer Graphics and Multimedia</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>IT8075</td>
<td>Software Project Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8081</td>
<td>Internet of Things</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>IT8074</td>
<td>Service Oriented Architecture</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE8077</td>
<td>Total Quality Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII
ELECTIVE - III

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CS8083</td>
<td>Multi-core Architectures and Programming</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CS8079</td>
<td>Human Computer Interaction</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CS8073</td>
<td>C# and .Net Programming</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CS8088</td>
<td>Wireless Adhoc and Sensor Networks</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CS8071</td>
<td>Advanced Topics on Databases</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8072</td>
<td>Foundation Skills in Integrated Product Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE8074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>GE8071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
SEMESTER VIII
ELECTIVE - IV

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC8093</td>
<td>Digital Image Processing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CS8085</td>
<td>Social Network Analysis</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>IT8073</td>
<td>Information Security</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CS8087</td>
<td>Software Defined Networks</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CS8074</td>
<td>Cyber Forensics</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CS8086</td>
<td>Soft Computing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VIII
ELECTIVE - V

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CS8080</td>
<td>Information Retrieval Techniques</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CS8078</td>
<td>Green Computing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CS8076</td>
<td>GPU Architecture and Programming</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CS8084</td>
<td>Natural Language Processing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CS8001</td>
<td>Parallel Algorithms</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>IT8077</td>
<td>Speech Processing</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>GE8073</td>
<td>Fundamentals of Nano Science</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HS8381</td>
<td>Interpersonal Skills/Listening & Speaking</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>CS8611</td>
<td>Mini Project</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>HS8581</td>
<td>Professional Communication</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>CS8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>S.NO.</td>
<td>SUBJECT AREA</td>
<td>CREDITS AS PER SEMESTER</td>
<td>CREDITS TOTAL</td>
<td>Percentage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I II III IV V VI VII VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS</td>
<td>4 7 7 3</td>
<td>14</td>
<td>7.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>BS</td>
<td>12 7 4 4 4</td>
<td>31</td>
<td>16.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>ES</td>
<td>9 5 9 23</td>
<td>23</td>
<td>12.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PC</td>
<td>5 10 19 18 10 82</td>
<td>82</td>
<td>44.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PE</td>
<td>3 6 6 15</td>
<td>15</td>
<td>8.15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>OE</td>
<td>3 3 6 6</td>
<td>6</td>
<td>3.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EEC</td>
<td>1 1 2 10</td>
<td>14</td>
<td>7.65%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25 24 24 24 25 25 22 16</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Non Credit / Mandatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS 12
Reading- short comprehension passages, practice in skimming-scanning and predicting- Writing-
completing sentences- developing hints. Listening- short texts- short formal and informal
conversations. Speaking- introducing oneself - exchanging personal information- Language
development- Wh- Questions- asking and answering-yes or no questions- parts of speech. Vocabulary development-- prefixes- suffixes- articles.- count/ uncount nouns.

UNIT II GENERAL READING AND FREE WRITING 12
Reading - comprehension-pre-reading-post reading comprehension questions (multiple choice
questions and /or short questions/ open-ended questions)-inductive reading- short narratives and
descriptions from newspapers including dialogues and conversations (also used as short Listening
texts)- register Writing – paragraph writing- topic sentence- main ideas- free writing, short
narrative descriptions using some suggested vocabulary and structures –Listening- telephonic
conversations. Speaking – sharing information of a personal kind—greeting – taking leave-
Language development – prepositions, conjunctions Vocabulary development- guessing
meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 12
Reading- short texts and longer passages (close reading) Writing- understanding text structure-
use of reference words and discourse markers-coherence-jumbled sentences Listening – listening
to longer texts and filling up the table- product description- narratives from different sources. Speaking- asking about routine actions and expressing opinions. Language development- degrees of comparison- pronouns- direct vs indirect questions- Vocabulary development – single word substitutes- adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT 12
Reading- comprehension-reading longer texts- reading different types of texts- magazines
Writing- letter writing, informal or personal letters-e-mails-conventions of personal email-
Listening- listening to dialogues or conversations and completing exercises based on them. Speaking- speaking about oneself- speaking about one’s friend- Language development-
Tenses- simple present-simple past- present continuous and past continuous- Vocabulary
development- synonyms-antonyms- phrasal verbs
UNIT V EXTENDED WRITING

TOTAL: 60 PERIODS

OUTCOMES:
AT THE END OF THE COURSE, LEARNERS WILL BE ABLE TO:
• Read articles of a general kind in magazines and newspapers.
• Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
• Comprehend conversations and short talks delivered in English
• Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

REFERENCES:
3. Redston, Chris &Gillies Cunningham Face2Face (Pre-intermediate Student’s Book& Workbook) Cambridge University Press, New Delhi: 2005

MA8151 ENGINEERING MATHEMATICS – I

OBJECTIVES :
The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.
UNIT II FUNCTIONS OF SEVERAL VARIABLES 12

UNIT III INTEGRAL CALCULUS 12
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS 12

UNIT V DIFFERENTIAL EQUATIONS 12

TOTAL: 60 PERIODS

OUTCOMES:
After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS:
2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:
OBJECTIVES:
- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I PROPERTIES OF MATTER 9

UNIT II WAVES AND FIBER OPTICS 9

UNIT III THERMAL PHYSICS 9

UNIT IV QUANTUM PHYSICS 9

UNIT V CRYSTAL PHYSICS 9
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices - inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

TOTAL :45 PERIODS

OUTCOMES:
Upon completion of this course,
- The students will gain knowledge on the basics of properties of matter and its applications,
- The students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- The students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- The students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- The students will understand the basics of crystals, their structures and different crystal growth techniques.
TEXT BOOKS:

REFERENCES:

CY8151 ENGINEERING CHEMISTRY

OBJECTIVES:
- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

UNIT II SURFACE CHEMISTRY AND CATALYSIS

UNIT III ALLOYS AND PHASE RULE

UNIT IV FUELS AND COMBUSTION
UNIT V ENERGY SOURCES AND STORAGE DEVICES
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H₂-O₂ fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

OBJECTIVES:
- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.
UNIT III CONTROL FLOW, FUNCTIONS 9
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES 9
Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to
- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING 7+12
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.
Visualization concepts and Free Hand sketching: Visualization principles – Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection - principles-Principal planes -First angle projection -projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 5+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 5+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12
Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

TOTAL: 90 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to:
- Familiarize with the fundamentals and standards of Engineering graphics
- Perform freehand sketching of basic geometrical constructions and multiple views of objects.
- Project orthographic projections of lines and plane surfaces.
- Draw projections and solids and development of surfaces.
- Visualize and to project isometric and perspective sections of simple solids.
TEXT BOOKS:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.

GE8161 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

OBJECTIVES:
- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS:
1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED
Python 3 interpreter for Windows/Linux

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:
- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.

BS8161

PHYSICS AND CHEMISTRY LABORATORY

(Common to all branches of B.E. / B.Tech Programmes)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)

1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser
 (b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- Apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.
1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by Iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TOTAL: 30 PERIODS

TEXTBOOK:

HS8251 TECHNICAL ENGLISH L T P C
4 0 0 4

OBJECTIVES:
The Course prepares second semester engineering and Technology students to:
- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialization.

UNIT I INTRODUCTION TECHNICAL ENGLISH 12
UNIT II READING AND STUDY SKILLS 12

UNIT III TECHNICAL WRITING AND GRAMMAR 12

UNIT IV REPORT WRITING 12

UNIT V GROUP DISCUSSION AND JOB APPLICATIONS 12

TOTAL : 60 PERIODS

OUTCOMES:
At the end of the course learners will be able to:
• Read technical texts and write area-specific texts effortlessly.
• Listen and comprehend lectures and talks in their area of specialisation successfully.
• Speak appropriately and effectively in varied formal and informal contexts.
• Write reports and winning job applications.

TEXT BOOKS:

REFERENCES:

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.
OBJECTIVES:
This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES 12

UNIT II VECTOR CALCULUS 12
Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS 12
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions $w = z + c, \frac{1}{z}, z^2$ - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 12

UNIT V LAPLACE TRANSFORMS 12

TOTAL: 60 PERIODS

OUTCOMES:
After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green’s theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:
REFERENCES:

PHYSICS FOR INFORMATION SCIENCE

PH8252 (Common to CSE & IT)

OBJECTIVES:
- To understand the essential principles of Physics of semiconductor device and Electron transport properties. Become proficient in magnetic and optical properties of materials and Nano-electronic devices.

UNIT I ELECTRICAL PROPERTIES OF MATERIALS

UNIT II SEMICONDUCTOR PHYSICS

UNIT III MAGNETIC PROPERTIES OF MATERIALS

UNIT IV OPTICAL PROPERTIES OF MATERIALS
Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell - LED – Organic LED – Laser diodes – Optical data storage techniques.
UNIT V NANO DEVICES

OUTCOMES:
At the end of the course, the students will able to
- Gain knowledge on classical and quantum electron theories, and energy band structures,
- Acquire knowledge on basics of semiconductor physics and its applications in various devices,
- Get knowledge on magnetic properties of materials and their applications in data storage,
- Have the necessary understanding on the functioning of optical materials for optoelectronics,
- Understand the basics of quantum structures and their applications in carbon electronics..

TEXT BOOKS:

REFERENCES:
UNIT III UTILIZATION OF ELECTRICAL POWER 9

UNIT IV ELECTRONIC CIRCUITS 9

UNIT V ELECTRICAL MEASUREMENT 9
Characteristic of measurement—errors in measurement, torque in indicating instruments—moving coil and moving iron meters, Energy meter and watt meter. Transducers—classification—thermo electric, RTD, Strain gauge, LVDT, LDR and piezoelectric. Oscilloscope—CRO.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Discuss the essentials of electric circuits and analysis.
- Discuss the basic operation of electric machines and transformers
- Introduction of renewable sources and common domestic loads.
- Introduction to measurement and metering for electric circuits.

TEXT BOOKS:

REFERENCES:

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C
3 0 0 3

OBJECTIVES:
- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.
UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45 PERIODS
OUTCOMES:
- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS:

REFERENCES:
UNIT IV STRUCTURES
Structure - Nested structures – Pointer and Structures – Array of structures – Example Program using structures and pointers – Self referential structures – Dynamic memory allocation - Singly linked list - typedef

UNIT V FILE PROCESSING
Files – Types of file processing: Sequential access, Random access – Sequential access file - Example Program: Finding average of numbers stored in sequential access file - Random access file - Example Program: Transaction processing using random access files – Command line arguments

OUTCOMES:
Upon completion of the course, the students will be able to
- Develop simple applications in C using basic constructs
- Design and implement applications using arrays and strings
- Develop and implement applications in C using functions and pointers.
- Develop applications in C using structures.
- Design applications using sequential and random access file processing.

TEXT BOOKS:

REFERENCES:

GE8261 ENGINEERING PRACTICES LABORATORY

OBJECTIVES:
- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

BUILDINGS:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

PLUMBING WORKS:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:

Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

CARPENTRY USING POWER TOOLS ONLY:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

WELDING:
(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.
(b) Gas welding practice

BASIC MACHINING:
(a) Simple Turning and Taper turning
(b) Drilling Practice

SHEET METAL WORK:
(a) Forming & Bending:
(b) Model making – Trays and funnels.
(c) Different type of joints.

MACHINE ASSEMBLY PRACTICE:
(a) Study of centrifugal pump
(b) Study of air conditioner

DEMONSTRATION ON:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V – fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE
1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 60 PERIODS
OUTCOMES:
On successful completion of this course, the student will be able to
- Fabricate carpentry components and pipe connections including plumbing works.
- Use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos (b) Demolition Hammer 2 Nos (c) Circular Saw 2 Nos (d) Planer 2 Nos (e) Hand Drilling Machine 2 Nos (f) Jigsaw 2 Nos

MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos (b) Digital Live-wire detector 2 Nos

ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply
OBJECTIVES:
- To develop programs in C using basic constructs.
- To develop applications in C using strings, pointers, functions, structures.
- To develop applications in C using file processing.

LIST OF EXPERIMENTS:
1. Programs using I/O statements and expressions.
2. Programs using decision-making constructs.
3. Write a program to find whether the given year is leap year or Not? (Hint: not every centurion year is a leap. For example 1700, 1800 and 1900 is not a leap year)
4. Design a calculator to perform the operations, namely, addition, subtraction, multiplication, division and square of a number.
5. Check whether a given number is Armstrong number or not?
6. Given a set of numbers like <10, 36, 54, 89, 12, 27>, find sum of weights based on the following conditions.
 - 5 if it is a perfect cube.
 - 4 if it is a multiple of 4 and divisible by 6.
 - 3 if it is a prime number.
 Sort the numbers based on the weight in the increasing order as shown below
 <10, its weight>,<36, its weight>,<89, its weight>
7. Populate an array with height of persons and find how many persons are above the average height.
8. Populate a two dimensional array with height and weight of persons and compute the Body Mass Index of the individuals.
9. Given a string “a$bcd./fg” find its reverse without changing the position of special characters.
 (Example input:a@gh%;j and output:j@hg%;a)
10. Convert the given decimal number into binary, octal and hexadecimal numbers using user defined functions.
11. From a given paragraph perform the following using built-in functions:
 a. Find the total number of words.
 b. Capitalize the first word of each sentence.
 c. Replace a given word with another word.
13. Sort the list of numbers using pass by reference.
15. Compute internal marks of students for five different subjects using structures and functions.
16. Insert, update, delete and append telephone details of an individual or a company into a telephone directory using random access file.
17. Count the number of account holders whose balance is less than the minimum balance using sequential access file.

Mini project
18. Create a “Railway reservation system” with the following modules
 - Booking
 - Availability checking
 - Cancellation
 - Prepare chart

TOTAL: 60 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:

- Develop C programs for simple applications making use of basic constructs, arrays and strings.
- Develop C programs involving functions, recursion, pointers, and structures.
- Design applications using sequential and random access file processing.

MA8351 DISCRETE MATHEMATICS L T P C
4 0 0 4

OBJECTIVES:

- To extend student’s logical and mathematical maturity and ability to deal with abstraction.
- To introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.
- To understand the basic concepts of combinatorics and graph theory.
- To familiarize the applications of algebraic structures.
- To understand the concepts and significance of lattices and boolean algebra which are widely used in computer science and engineering.

UNIT I LOGIC AND PROOFS 12

UNIT II COMBINATORICS 12

UNIT III GRAPHS 12
Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

UNIT IV ALGEBRAIC STRUCTURES 12

UNIT V LATTICES AND BOOLEAN ALGEBRA 12

TOTAL: 60 PERIODS

OUTCOMES:
At the end of the course, students would:

- Have knowledge of the concepts needed to test the logic of a program.
- Have an understanding in identifying structures on many levels.
- Be aware of a class of functions which transform a finite set into another finite set which relates to input and output functions in computer science.
- Be aware of the counting principles.
- Be exposed to concepts and properties of algebraic structures such as groups, rings and fields.
TEXTBOOKS:

REFERENCES:

CS8351 DIGITAL PRINCIPLES AND SYSTEM DESIGN L T P C
4 0 0 4

OBJECTIVES:
• To design digital circuits using simplified Boolean functions
• To analyze and design combinational circuits
• To analyze and design synchronous and asynchronous sequential circuits
• To understand Programmable Logic Devices
• To write HDL code for combinational and sequential circuits

UNIT I BOOLEAN ALGEBRA AND LOGIC GATES 12

UNIT II COMBINATIONAL LOGIC 12

UNIT III SYNCHRONOUS SEQUENTIAL LOGIC 12

UNIT IV ASYNCHRONOUS SEQUENTIAL LOGIC 12

UNIT V MEMORY AND PROGRAMMABLE LOGIC 12

TOTAL : 60 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
• Simplify Boolean functions using KMap
• Design and Analyze Combinational and Sequential Circuits
• Implement designs using Programmable Logic Devices
• Write HDL code for combinational and Sequential Circuits
TEXT BOOK:

REFERENCES:
1. G. K. Kharate, Digital Electronics, Oxford University Press, 2010

CS8391 DATA STRUCTURES

OBJECTIVES:
- To understand the concepts of ADTs
- To Learn linear data structures – lists, stacks, and queues
- To understand sorting, searching and hashing algorithms
- To apply Tree and Graph structures

UNIT I LINEAR DATA STRUCTURES – LIST
Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation—singly linked lists- circularly linked lists- doubly-linked lists – applications of lists – Polynomial Manipulation – All operations (Insertion, Deletion, Merge, Traversal).

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES

UNIT III NON LINEAR DATA STRUCTURES – TREES

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

UNIT V SEARCHING, SORTING AND HASHING TECHNIQUES

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Implement abstract data types for linear data structures.
- Apply the different linear and non-linear data structures to problem solutions.
- Critically analyze the various sorting algorithms.
TEXT BOOKS:

REFERENCES:

CS8392 OBJECT ORIENTED PROGRAMMING L T P C
3 0 0 3

OBJECTIVES:
- To understand Object Oriented Programming concepts and basic characteristics of Java
- To know the principles of packages, inheritance and interfaces
- To define exceptions and use I/O streams
- To develop a java application with threads and generics classes
- To design and build simple Graphical User Interfaces

UNIT I INTRODUCTION TO OOP AND JAVA FUNDAMENTALS 10

UNIT II INHERITANCE AND INTERFACES 9
Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces - Object cloning -inner classes, Array Lists - Strings

UNIT III EXCEPTION HANDLING AND I/O 9
Exceptions - exception hierarchy - throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING 8
Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.
UNIT V EVENT DRIVEN PROGRAMMING

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:

- Develop Java programs using OOP principles
- Develop Java programs with the concepts inheritance and interfaces
- Build Java applications using exceptions and I/O streams
- Develop Java applications with threads and generics classes
- Develop interactive Java programs using swings

TEXT BOOKS:

REFERENCES:

EC8395 COMMUNICATION ENGINEERING

OBJECTIVES:
- To introduce the relevance of this course to the existing technology through demonstrations, case studies, simulations, contributions of scientist, national/international policies with a futuristic vision along with socio-economic impact and issues
- To study the various analog and digital modulation techniques
- To study the principles behind information theory and coding
- To study the various digital communication techniques

UNIT I ANALOG MODULATION

UNIT II PULSE MODULATION
Low pass sampling theorem – Quantization – PAM – Line coding – PCM, DPCM, DM, and ADPCM And ADM, Channel Vocoder - Time Division Multiplexing, Frequency Division Multiplexing

UNIT III DIGITAL MODULATION AND TRANSMISSION
Phase shift keying – BPSK, DPSK, QPSK – Principles of M-ary signaling M-ary PSK & QAM – Comparison, ISI – Pulse shaping – Duo binary encoding – Cosine filters – Eye pattern, equalizers
UNIT IV INFORMATION THEORY AND CODING 9
Measure of information – Entropy – Source coding theorem – Shannon–Fano coding, Huffman Coding, LZ Coding – Channel capacity – Shannon-Hartley law – Shannon's limit – Error control codes – Cyclic codes, Syndrome calculation – Convolution Coding, Sequential and Viterbi decoding

UNIT V SPREAD SPECTRUM AND MULTIPLE ACCESS 9

OUTCOMES:
At the end of the course, the student should be able to:
• Ability to comprehend and appreciate the significance and role of this course in the present contemporary world
• Apply analog and digital communication techniques.
• Use data and pulse communication techniques.
• Analyze Source and Error control coding.

TEXT BOOKS:
2. S. Haykin “Digital Communications” John Wiley 2005

REFERENCES:
2. H P Hsu, Schaum Outline Series – “Analog and Digital Communications” TMH 2006

CS8381 DATA STRUCTURES LABORATORY L T P C
0 0 4 2

OBJECTIVES
• To implement linear and non-linear data structures
• To understand the different operations of search trees
• To implement graph traversal algorithms
• To get familiarized to sorting and searching algorithms

1. Array implementation of Stack and Queue ADTs
2. Array implementation of List ADT
3. Linked list implementation of List, Stack and Queue ADTs
4. Applications of List, Stack and Queue ADTs
5. Implementation of Binary Trees and operations of Binary Trees
6. Implementation of Binary Search Trees
7. Implementation of AVL Trees
9. Graph representation and Traversal algorithms
10. Applications of Graphs
11. Implementation of searching and sorting algorithms
12. Hashing – any two collision techniques

TOTAL: 60 PERIODS
OUTCOMES:
At the end of the course, the students will be able to:

- Write functions to implement linear and non-linear data structure operations
- Suggest appropriate linear / non-linear data structure operations for solving a given problem
- Appropriately use the linear / non-linear data structure operations for a given problem
- Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval

CS8383 OBJECT ORIENTED PROGRAMMING LABORATORY L T P C
0 0 4 2

OBJECTIVES
- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, arraylist, exception handling and file processing.
- To develop applications using generic programming and event handling.

LIST OF EXPERIMENTS
1. Develop a Java application to generate Electricity bill. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Compute the bill amount using the following tariff.

 If the type of the EB connection is domestic, calculate the amount to be paid as follows:
 - First 100 units - Rs. 1 per unit
 - 101-200 units - Rs. 2.50 per unit
 - 201 -500 units - Rs. 4 per unit
 - > 501 units - Rs. 6 per unit

 If the type of the EB connection is commercial, calculate the amount to be paid as follows:
 - First 100 units - Rs. 2 per unit
 - 101-200 units - Rs. 4.50 per unit
 - 201 -500 units - Rs. 6 per unit
 - > 501 units - Rs. 7 per unit

2. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice versa), time converter (hours to minutes, seconds and vice versa) using packages.

3. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.

4. Design a Java interface for ADT Stack. Implement this interface using array. Provide necessary exception handling in both the implementations.

5. Write a program to perform string operations using ArrayList. Write functions for the following

 a. Append - add at end
 b. Insert – add at particular index
 c. Search
 d. List all string starts with given letter
6. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area() that prints the area of the given shape.

7. Write a Java program to implement user defined exception handling.

8. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.

9. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.

10. Write a java program to find the maximum value from the given type of elements using a generic function.

11. Design a calculator using event-driven programming paradigm of Java with the following options.
 a) Decimal manipulations
 b) Scientific manipulations

12. Develop a mini project for any application using Java concepts.

OUTCOMES
Upon completion of the course, the students will be able to
- Develop and implement Java programs for simple applications that make use of classes, packages and interfaces.
- Develop and implement Java programs with arraylist, exception handling and multithreading.
- Design applications using file processing, generic programming and event handling.

CS8382 DIGITAL SYSTEMS LABORATORY L T P C
0 0 4 2

OBJECTIVES:
- To understand the various basic logic gates
- To design and implement the various combinational circuits
- To design and implement combinational circuits using MSI devices.
- To design and implement sequential circuits
- To understand and code with HDL programming

LIST OF EXPERIMENTS
1. Verification of Boolean Theorems using basic gates.
2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters.
3. Design and implement Half/Full Adder and Subtractor.
4. Design and implement combinational circuits using MSI devices:
 - 4 – bit binary adder / subtractor
 - Parity generator / checker
 - Magnitude Comparator
 - Application using multiplexers
5. Design and implement shift-registers.
6. Design and implement synchronous counters.
7. Design and implement asynchronous counters.
8. Coding combinational circuits using HDL.
9. Coding sequential circuits using HDL.
10. Design and implementation of a simple digital system (Mini Project).

OUTCOMES:
Upon Completion of the course, the students will be able to:

- Implement simplified combinational circuits using basic logic gates
- Implement combinational circuits using MSI devices
- Implement sequential circuits like registers and counters
- Simulate combinational and sequential circuits using HDL

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS HARDWARE:
1. Digital trainer kits - 30
2. Digital ICs required for the experiments in sufficient numbers

SOFTWARE:
1. HDL simulator.

OBJECTIVES:
The Course will enable learners to:

- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- Improve general and academic listening skills
- Make effective presentations.

UNIT I
Listening as a key skill- its importance- speaking - give personal information - ask for personal information - express ability - enquire about ability - ask for clarification Improving pronunciation - pronunciation basics taking lecture notes - preparing to listen to a lecture - articulate a complete idea as opposed to producing fragmented utterances.

UNIT II
Listen to a process information- give information, as part of a simple explanation - conversation starters: small talk - stressing syllables and speaking clearly - intonation patterns - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

UNIT III
Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk - greet - respond to greetings - describe health and symptoms - invite and offer - accept - decline - take leave - listen for and follow the gist- listen for detail
UNIT IV
Being an active listener: giving verbal and non-verbal feedback - participating in a group discussion - summarizing academic readings and lectures conversational speech listening to and participating in conversations - persuade.

UNIT V
Formal and informal talk - listen to follow and respond to explanations, directions and instructions in academic and business contexts - strategies for presentations and interactive communication - group/pair presentations - negotiate disagreement in group work.

TOTAL : 30 PERIODS

OUTCOMES:
At the end of the course Learners will be able to:
- Listen and respond appropriately.
- Participate in group discussions
- Make effective presentations
- Participate confidently and appropriately in conversations both formal and informal

TEXT BOOKS:

REFERENCES:

MA8402 PROBABILITY AND QUEUING THEORY

OBJECTIVES:
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the basic concepts of probability, one and two dimensional random variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in IT fields.
- To understand the concept of queueing models and apply in engineering.
- To understand the significance of advanced queueing models.
- To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.
UNIT I PROBABILITY AND RANDOM VARIABLES 12
Probability – Axioms of probability – Conditional probability – Baye’s theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES 12
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III RANDOM PROCESSES 12

UNIT IV QUEUEING MODELS 12
Markovian queues – Birth and death processes – Single and multiple server queueing models – Little’s formula - Queues with finite waiting rooms – Queues with impatient customers : Balking and reneging.

UNIT V ADVANCED QUEUEING MODELS 12
Finite source models - M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E_k/1 as special cases – Series queues – Open Jackson networks.

TOTAL : 60 PERIODS

OUTCOMES:
Upon successful completion of the course, students should be able to:
- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept of random processes in engineering disciplines.
- Acquire skills in analyzing queueing models.
- Understand and characterize phenomenon which evolve with respect to time in a probabilistic manner

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
• To learn the basic structure and operations of a computer.
• To learn the arithmetic and logic unit and implementation of fixed-point and floating point arithmetic unit.
• To learn the basics of pipelined execution.
• To understand parallelism and multi-core processors.
• To understand the memory hierarchies, cache memories and virtual memories.
• To learn the different ways of communication with I/O devices.

UNIT I BASIC STRUCTURE OF A COMPUTER SYSTEM 9

UNIT II ARITHMETIC FOR COMPUTERS 9
Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Operations – Subword Parallelism

UNIT III PROCESSOR AND CONTROL UNIT 9
A Basic MIPS implementation – Building a Datapath – Control Implementation Scheme – Pipelining – Pipelined datapath and control – Handling Data Hazards & Control Hazards – Exceptions.

UNIT IV PARALLELISIM 9

UNIT V MEMORY & I/O SYSTEMS 9

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
• Understand the basics structure of computers, operations and instructions.
• Design arithmetic and logic unit.
• Understand pipelined execution and design control unit.
• Understand parallel processing architectures.
• Understand the various memory systems and I/O communication.

TEXT BOOKS:
REFERENCES:

CS8492 DATABASE MANAGEMENT SYSTEMS L T P C
3 0 0 3

OBJECTIVES
- To learn the fundamentals of data models and to represent a database system using ER diagrams.
- To study SQL and relational database design.
- To understand the internal storage structures using different file and indexing techniques which will help in physical DB design.
- To understand the fundamental concepts of transaction processing- concurrency control techniques and recovery procedures.
- To have an introductory knowledge about the Storage and Query processing Techniques

UNIT I RELATIONAL DATABASES 10

UNIT II DATABASE DESIGN 8

UNIT III TRANSACTIONS 9

UNIT IV IMPLEMENTATION TECHNIQUES 9

UNIT V ADVANCED TOPICS 9

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:
- Classify the modern and futuristic database applications based on size and complexity
- Map ER model to Relational model to perform database design effectively
- Write queries using normalization criteria and optimize queries
- Compare and contrast various indexing strategies in different database systems
- Appraise how advanced databases differ from traditional databases.

TEXT BOOKS:

REFERENCES:

CS8451 DESIGN AND ANALYSIS OF ALGORITHMS L T P C
3 0 0 3

OBJECTIVES:
- To understand and apply the algorithm analysis techniques.
- To critically analyze the efficiency of alternative algorithmic solutions for the same problem
- To understand different algorithm design techniques.
- To understand the limitations of Algorithmic power.

UNIT I INTRODUCTION 9

UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 9

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 9
Greedy Technique – Container loading problem - Prim’s algorithm and Kruskal's Algorithm – 0/1 Knapsack problem, Optimal Merge pattern - Huffman Trees.
UNIT IV
ITERATIVE IMPROVEMENT
9
The Simplex Method - The Maximum-Flow Problem – Maximum Matching in Bipartite Graphs, Stable marriage Problem.

UNIT V
COPING WITH THE LIMITATIONS OF ALGORITHM POWER
9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:
- Design algorithms for various computing problems.
- Analyze the time and space complexity of algorithms.
- Critically analyze the different algorithm design techniques for a given problem.
- Modify existing algorithms to improve efficiency.

TEXT BOOKS:

REFERENCES:
5. http://nptel.ac.in/

CS8493
OPERATING SYSTEMS
L T P C
3 0 0 3

OBJECTIVES:
- To understand the basic concepts and functions of operating systems.
- To understand Processes and Threads
- To analyze Scheduling algorithms.
- To understand the concept of Deadlocks.
- To analyze various memory management schemes.
- To understand I/O management and File systems.
- To be familiar with the basics of Linux system and Mobile OS like iOS and Android.

UNIT I
OPERATING SYSTEM OVERVIEW
7
UNIT II PROCESS MANAGEMENT
Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication; CPU Scheduling - Scheduling criteria, Scheduling algorithms, Multiple-processor scheduling, Real time scheduling; Threads- Overview, Multithreading models, Threading issues; Process Synchronization - The critical-section problem, Synchronization hardware, Mutex locks, Semaphores, Classic problems of synchronization, Critical regions, Monitors; Deadlock - System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

UNIT III STORAGE MANAGEMENT
Main Memory – Background, Swapping, Contiguous Memory Allocation, Paging, Segmentation, Segmentation with paging, 32 and 64 bit architecture Examples; Virtual Memory – Background, Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

UNIT IV FILE SYSTEMS AND I/O SYSTEMS

UNIT V CASE STUDY

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:
- Analyze various scheduling algorithms.
- Understand deadlock, prevention and avoidance algorithms.
- Compare and contrast various memory management schemes.
- Understand the functionality of file systems.
- Perform administrative tasks on Linux Servers.
- Compare iOS and Android Operating Systems.

TEXT BOOK :

REFERENCES :
CS8494 SOFTWARE ENGINEERING

L T P C
3 0 0 3

OBJECTIVES:
• To understand the phases in a software project
• To understand fundamental concepts of requirements engineering and Analysis Modeling.
• To understand the various software design methodologies
• To learn various testing and maintenance measures

UNIT I SOFTWARE PROCESS AND AGILE DEVELOPMENT 9

UNIT II REQUIREMENTS ANALYSIS AND SPECIFICATION 9

UNIT III SOFTWARE DESIGN 9

UNIT IV TESTING AND MAINTENANCE 9

UNIT V PROJECT MANAGEMENT 9

TOTAL :45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
• Identify the key activities in managing a software project.
• Compare different process models.
• Concepts of requirements engineering and Analysis Modeling.
• Apply systematic procedure for software design and deployment.
• Compare and contrast the various testing and maintenance.
• Manage project schedule, estimate project cost and effort required.

TEXT BOOKS:
REFERENCES:
5. http://nptel.ac.in/.

CS8481 DATABASE MANAGEMENT SYSTEMS LABORATORY L T P C 0 0 4 2

AIM:
The aim of this laboratory is to inculcate the abilities of applying the principles of the database management systems. This course aims to prepare the students for projects where a proper implementation of databases will be required.

OBJECTIVES:
- To understand data definitions and data manipulation commands
- To learn the use of nested and join queries
- To understand functions, procedures and procedural extensions of data bases
- To be familiar with the use of a front end tool
- To understand design and implementation of typical database applications

1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Control statements
2. Database Querying – Simple queries, Nested queries, Sub queries and Joins
3. Views, Sequences, Synonyms
4. Database Programming: Implicit and Explicit Cursors
5. Procedures and Functions
6. Triggers
7. Exception Handling
8. Database Design using ER modeling, normalization and Implementation for any application
9. Database Connectivity with Front End Tools
10. Case Study using real life database applications

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Use typical data definitions and manipulation commands.
- Design applications to test Nested and Join Queries
- Implement simple applications that use Views
- Implement applications that require a Front-end Tool
- Critically analyze the use of Tables, Views, Functions and Procedures
OBJECTIVES
- To learn Unix commands and shell programming
- To implement various CPU Scheduling Algorithms
- To implement Process Creation and Inter Process Communication.
- To implement Deadlock Avoidance and Deadlock Detection Algorithms
- To implement Page Replacement Algorithms
- To implement File Organization and File Allocation Strategies

LIST OF EXPERIMENTS
1. Basics of UNIX commands
2. Write programs using the following system calls of UNIX operating system
 fork, exec, getpid, exit, wait, close, stat, opendir, readdir
3. Write C programs to simulate UNIX commands like cp, ls, grep, etc.
4. Shell Programming
5. Write C programs to implement the various CPU Scheduling Algorithms
6. Implementation of Semaphores
7. Implementation of Shared memory and IPC
8. Bankers Algorithm for Deadlock Avoidance
9. Implementation of Deadlock Detection Algorithm
10. Write C program to implement Threading & Synchronization Applications
11. Implementation of the following Memory Allocation Methods for fixed partition
 a) First Fit b) Worst Fit c) Best Fit
12. Implementation of Paging Technique of Memory Management
13. Implementation of the following Page Replacement Algorithms
 a) FIFO b) LRU c) LFU
14. Implementation of the various File Organization Techniques
15. Implementation of the following File Allocation Strategies
 a) Sequential b) Indexed c) Linked

OUTCOMES:
At the end of the course, the student should be able to
- Compare the performance of various CPU Scheduling Algorithms
- Implement Deadlock avoidance and Detection Algorithms
- Implement Semaphores
- Create processes and implement IPC
- Analyze the performance of the various Page Replacement Algorithms
- Implement File Organization and File Allocation Strategies

TOTAL: 60 PERIODS

OBJECTIVES:
- Strengthen the reading skills of students of engineering.
- Enhance their writing skills with specific reference to technical writing.
- Develop students' critical thinking skills.
- Provide more opportunities to develop their project and proposal writing skills.
UNIT I
Reading - Strategies for effective reading - Use glosses and footnotes to aid reading comprehension - Read and recognize different text types - Predicting content using photos and title
Writing - Plan before writing - Develop a paragraph: topic sentence, supporting sentences, concluding sentence - Write a descriptive paragraph

UNIT II
Reading - Read for details - Use of graphic organizers to review and aid comprehension Writing - State reasons and examples to support ideas in writing - Write a paragraph with reasons and examples - Write an opinion paragraph

UNIT III
Reading - Understanding pronoun reference and use of connectors in a passage - Speed reading techniques Writing - Elements of a good essay - Types of essays - descriptive-narrative - issue-based - argumentative - analytical

UNIT IV
Reading - Genre and Organization of Ideas Writing - Email writing - visumes - Job application - project writing - writing convincing proposals

UNIT V
Reading - Critical reading and thinking - understanding how the text positions the reader - identify Writing - Statement of Purpose - letter of recommendation - Vision statement

TOTAL: 30 PERIODS

OUTCOMES:
At the end of the course Learners will be able to:
- Write different types of essays.
- Write winning job applications.
- Read and evaluate texts critically.
- Display critical thinking in various professional contexts.

TEXT BOOKS:

REFERENCES:
MA8551 ALGEBRA AND NUMBER THEORY

OBJECTIVES:
- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To introduce and apply the concepts of rings, finite fields and polynomials.
- To understand the basic concepts in number theory
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS
Groups : Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.
Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.

UNIT II FINITE FIELDS AND POLYNOMIALS
Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS
Division algorithm – Base - b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES
Linear Diophantine equations – Congruence’s – Linear Congruence’s - Applications: Divisibility tests - Modular exponentiation-Chinese remainder theorem – 2 x 2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS
Wilson’s theorem – Fermat’s little theorem – Euler’s theorem – Euler’s Phi functions – Tau and Sigma functions.

OUTCOMES:
Upon successful completion of the course, students should be able to:
- Apply the basic notions of groups, rings, fields which will then be used to solve related problems.
- Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced algebraic techniques.
- Demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text.
- Apply integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
• To understand the protocol layering and physical level communication.
• To analyze the performance of a network.
• To understand the various components required to build different networks.
• To learn the functions of network layer and the various routing protocols.
• To familiarize the functions and protocols of the Transport layer.

UNIT I INTRODUCTION AND PHYSICAL LAYER

UNIT II DATA-LINK LAYER & MEDIA ACCESS

UNIT III NETWORK LAYER

UNIT IV TRANSPORT LAYER

UNIT V APPLICATION LAYER
WWW and HTTP – FTP – Email –Telnet –SSH – DNS – SNMP.

OUTCOMES:
On Completion of the course, the students should be able to:
• Understand the basic layers and its functions in computer networks.
• Evaluate the performance of a network.
• Understand the basics of how data flows from one node to another.
• Analyze and design routing algorithms.
• Design protocols for various functions in the network.
• Understand the working of various application layer protocols.

TEXT BOOK:

REFERENCES
OBJECTIVES:

- To understand the Architecture of 8086 microprocessor.
- To learn the design aspects of I/O and Memory Interfacing circuits.
- To interface microprocessors with supporting chips.
- To study the Architecture of 8051 microcontroller.
- To design a microcontroller based system.

UNIT I THE 8086 MICROPROCESSOR 9
Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

UNIT II 8086 SYSTEM BUS STRUCTURE 9

UNIT III I/O INTERFACING 9

UNIT IV MICROCONTROLLER 9
Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V INTERFACING MICROCONTROLLER 9
Programming 8051 Timers - Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors

OUTCOMES:
At the end of the course, the students should be able to:
- Understand and execute programs based on 8086 microprocessor.
- Design Memory Interfacing circuits.
- Design and interface I/O circuits.
- Design and implement 8051 microcontroller based systems.

TEXT BOOKS:
REFERENCES:
1. Doughlas V.Hall, “Microprocessors and Interfacing, Programming and Hardware”, TMH, 2012

CS8501 THEORY OF COMPUTATION L T P C
3 0 0 3

OBJECTIVES:
- To understand the language hierarchy
- To construct automata for any given pattern and find its equivalent regular expressions
- To design a context free grammar for any given language
- To understand Turing machines and their capability
- To understand undecidable problems and NP class problems

UNIT I AUTOMATA FUNDAMENTALS

UNIT II REGULAR EXPRESSIONS AND LANGUAGES
Regular Expressions – FA and Regular Expressions – Proving Languages not to be regular – Closure Properties of Regular Languages – Equivalence and Minimization of Automata.

UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES

UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES
Normal Forms for CFG – Pumping Lemma for CFL – Closure Properties of CFL – Turing Machines – Programming Techniques for TM.

UNIT V UNDECIDABILITY
Non Recursive Enumerable (RE) Language – Undecidable Problem with RE – Undecidable Problems about TM – Post’s Correspondence Problem, The Class P and NP.

OUTCOMES:
Upon completion of the course, the students will be able to:
- Construct automata, regular expression for any pattern.
- Write Context free grammar for any construct.
- Design Turing machines for any language.
- Propose computation solutions using Turing machines.
- Derive whether a problem is decidable or not.

TEXT BOOK:
REFERENCES:

CS8592 OBJECT ORIENTED ANALYSIS AND DESIGN L T P C
3 0 0 3

OBJECTIVES:
- To understand the fundamentals of object modeling
- To understand and differentiate Unified Process from other approaches.
- To design with static UML diagrams.
- To design with the UML dynamic and implementation diagrams.
- To improve the software design with design patterns.
- To test the software against its requirements specification

UNIT I UNIFIED PROCESS AND USE CASE DIAGRAMS 9
Introduction to OOAD with OO Basics - Unified Process – UML diagrams – Use Case – Case study
- the Next Gen POS system, Inception - Use case Modelling – Relating Use cases – include, extend and generalization – When to use Use cases

UNIT II STATIC UML DIAGRAMS 9
Class Diagram – Elaboration – Domain Model – Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies – Aggregation and Composition - Relationship between sequence diagrams and use cases – When to use Class Diagrams

UNIT III DYNAMIC AND IMPLEMENTATION UML DIAGRAMS 9

Implementation Diagrams - UML package diagram - When to use package diagrams - Component and Deployment Diagrams – When to use Component and Deployment diagrams

UNIT IV DESIGN PATTERNS 9
GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller

UNIT V TESTING 9
Object Oriented Methodologies – Software Quality Assurance – Impact of object orientation on Testing – Develop Test Cases and Test Plans

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the students will be able to:
- Express software design with UML diagrams
- Design software applications using OO concepts.
- Identify various scenarios based on software requirements
- Transform UML based software design into pattern based design using design patterns
- Understand the various testing methodologies for OO software

TEXT BOOKS:

REFERENCES:

EC8681 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

OBJECTIVES:
- To Introduce ALP concepts, features and Coding methods
- Write ALP for arithmetic and logical operations in 8086 and 8051
- Differentiate Serial and Parallel Interface
- Interface different I/Os with Microprocessors
- Be familiar with MASM

LIST OF EXPERIMENTS:
8086 Programs using kits and MASM
1. Basic arithmetic and Logical operations
2. Move a data block without overlap
3. Code conversion, decimal arithmetic and Matrix operations.
4. Floating point operations, string manipulations, sorting and searching
5. Password checking, Print RAM size and system date
6. Counters and Time Delay

Peripherals and Interfacing Experiments
7. Traffic light controller
8. Stepper motor control
9. Digital clock
10. Keyboard and Display
11. Printer status
12. Serial interface and Parallel interface
13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM
14. Basic arithmetic and Logical operations
15. Square and Cube program, Find 2’s complement of a number
16. Unpacked BCD to ASCII

TOTAL: 60 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Write ALP Programmes for fixed and Floating Point and Arithmetic operations
- Interface different I/Os with processor
- Generate waveforms using Microprocessors
- Execute Programs in 8051
- Explain the difference between simulator and Emulator

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

HARDWARE:
8086 development kits - 30 nos
Interfacing Units - Each 10 nos
Microcontroller - 30 nos

SOFTWARE:
Intel Desktop Systems with MASM - 30 nos
8086 Assembler
8051 Cross Assembler

CS8582 OBJECT ORIENTED ANALYSIS AND DESIGN LABORATORY L T P C
0 0 4 2

OBJECTIVES:
- To capture the requirements specification for an intended software system
- To draw the UML diagrams for the given specification
- To map the design properly to code
- To test the software system thoroughly for all scenarios
- To improve the design by applying appropriate design patterns.

Draw standard UML diagrams using an UML modeling tool for a given case study and map design to code and implement a 3 layered architecture. Test the developed code and validate whether the SRS is satisfied.

1. Identify a software system that needs to be developed.
2. Document the Software Requirements Specification (SRS) for the identified system.
3. Identify use cases and develop the Use Case model.
4. Identify the conceptual classes and develop a Domain Model and also derive a Class Diagram from that.
5. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams
6. Draw relevant State Chart and Activity Diagrams for the same system.
7. Implement the system as per the detailed design
8. Test the software system for all the scenarios identified as per the usecase diagram
9. Improve the reusability and maintainability of the software system by applying appropriate design patterns.
10. Implement the modified system and test it for various scenarios

SUGGESTED DOMAINS FOR MINI-PROJECT:
1. Passport automation system.
2. Book bank
3. Exam registration
4. Stock maintenance system.
5. Online course reservation system
6. Airline/Railway reservation system
7. Software personnel management system
8. Credit card processing
9. e-book management system
10. Recruitment system
11. Foreign trading system
12. Conference management system
13. BPO management system
14. Library management system
15. Student information system

OUTCOMES:
Upon completion of this course, the students will be able to:
- Perform OO analysis and design for a given problem specification.
- Identify and map basic software requirements in UML mapping.
- Improve the software quality using design patterns and to explain the rationale behind applying specific design patterns
- Test the compliance of the software with the SRS.

HARDWARE REQUIREMENTS
Standard PC

SOFTWARE REQUIREMENTS
1. Windows 7 or higher
2. ArgoUML that supports UML 1.4 and higher
3. Selenium, JUnit or Apache JMeter

CS8581 NETWORKS LABORATORY

OBJECTIVES:
- To learn and use network commands.
- To learn socket programming.
- To implement and analyze various network protocols.
- To learn and use simulation tools.
- To use simulation tools to analyze the performance of various network protocols.

LIST OF EXPERIMENTS
1. Learn to use commands like tcpdump, netstat, ifconfig, nslookup and traceroute. Capture ping and traceroute PDUs using a network protocol analyzer and examine.
2. Write a HTTP web client program to download a web page using TCP sockets.
3. Applications using TCP sockets like:
 - Echo client and echo server
 - Chat
 - File Transfer
4. Simulation of DNS using UDP sockets.
5. Write a code simulating ARP /RARP protocols.
6. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS.
7. Study of TCP/UDP performance using Simulation tool.
8. Simulation of Distance Vector/Link State Routing algorithm.
10. Simulation of error correction code (like CRC).

TOTAL: 60 PERIODS
OUTCOMES:
Upon Completion of the course, the students will be able to:

- Implement various protocols using TCP and UDP.
- Compare the performance of different transport layer protocols.
- Use simulation tools to analyze the performance of various network protocols.
- Analyze various routing algorithms.
- Implement error correction codes.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

LABORATORY REQUIREMENT FOR BATCH OF 30 STUDENTS:

HARDWARE:
1. Standalone desktops 30 Nos

SOFTWARE:
1. C / C++ / Java / Python / Equivalent Compiler 30
2. Network simulator like NS2/Glomosim/OPNET/ Packet Tracer / Equivalent

CS8651 INTERNET PROGRAMMING L T P C
3 0 0 3

OBJECTIVES:

- To understand different Internet Technologies.
- To learn java-specific web services architecture

UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0

UNIT II CLIENT SIDE PROGRAMMING

UNIT III SERVER SIDE PROGRAMMING

UNIT IV PHP and XML
An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions- Form Validation- Regular Expressions - File handling – Cookies - Connecting to Database. XML: Basic XML- Document Type Definition- XML Schema DOM and Presenting XML, XML Parsers and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).
UNIT V INTRODUCTION TO AJAX and WEB SERVICES

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:

- Construct a basic website using HTML and Cascading Style Sheets.
- Build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
- Develop server side programs using Servlets and JSP.
- Construct simple web pages in PHP and to represent data in XML format.
- Use AJAX and web services to develop interactive web applications

TEXT BOOK:

REFERENCES:

CS8691 ARTIFICIAL INTELLIGENCE

OBJECTIVES:
- To understand the various characteristics of Intelligent agents
- To learn the different search strategies in AI
- To learn to represent knowledge in solving AI problems
- To understand the different ways of designing software agents
- To know about the various applications of AI.

UNIT I INTRODUCTION

UNIT II PROBLEM SOLVING METHODS
UNIT III KNOWLEDGE REPRESENTATION

UNIT IV SOFTWARE AGENTS

UNIT V APPLICATIONS

TOTAL :45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Use appropriate search algorithms for any AI problem
- Represent a problem using first order and predicate logic
- Provide the apt agent strategy to solve a given problem
- Design software agents to solve a problem
- Design applications for NLP that use Artificial Intelligence.

TEXT BOOKS:

REFERENCES:

CS8601 MOBILE COMPUTING

OBJECTIVES:
- To understand the basic concepts of mobile computing.
- To learn the basics of mobile telecommunication system .
- To be familiar with the network layer protocols and Ad-Hoc networks.
- To know the basis of transport and application layer protocols.
- To gain knowledge about different mobile platforms and application development.
UNIT I INTRODUCTION

UNIT II MOBILE TELECOMMUNICATION SYSTEM

UNIT III MOBILE NETWORK LAYER

UNIT IV MOBILE TRANSPORT AND APPLICATION LAYER

UNIT V MOBILE PLATFORMS AND APPLICATIONS

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:
- Explain the basics of mobile telecommunication systems
- Illustrate the generations of telecommunication systems in wireless networks
- Determine the functionality of MAC, network layer and Identify a routing protocol for a given Ad hoc network
- Explain the functionality of Transport and Application layers
- Develop a mobile application using android/blackberry/ios/Windows SDK

TEXT BOOKS:

REFERENCES
7. Windows Phone DevCenter : http://developer.windowsphone.com
OBJECTIVES:
- To learn the various phases of compiler.
- To learn the various parsing techniques.
- To understand intermediate code generation and run-time environment.
- To learn to implement front-end of the compiler.
- To learn to implement code generator.

UNIT I INTRODUCTION TO COMPILERS 9

UNIT II SYNTAX ANALYSIS 12

UNIT III INTERMEDIATE CODE GENERATION 8
Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of Expressions, Type Checking.

UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION 8

UNIT V CODE OPTIMIZATION 8

LIST OF EXPERIMENTS:
1. Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators etc.). Create a symbol table, while recognizing identifiers.
2. Implement a Lexical Analyzer using Lex Tool
3. Implement an Arithmetic Calculator using LEX and YACC
4. Generate three address code for a simple program using LEX and YACC.
5. Implement simple code optimization techniques (Constant folding, Strength reduction and Algebraic transformation)
6. Implement back-end of the compiler for which the three address code is given as input and the 8086 assembly language code is produced as output.

PRACTICALS 30 PERIODS
THEORY 45 PERIODS
TOTAL : 75 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:
- Understand the different phases of compiler.
- Design a lexical analyzer for a sample language.
- Apply different parsing algorithms to develop the parsers for a given grammar.
- Understand syntax-directed translation and run-time environment.
- Learn to implement code optimization techniques and a simple code generator.
- Design and implement a scanner and a parser using LEX and YACC tools.
TEXT BOOK:

REFERENCES

CS8603 DISTRIBUTED SYSTEMS

OBJECTIVES:
- To understand the foundations of distributed systems.
- To learn issues related to clock Synchronization and the need for global state in distributed systems.
- To learn distributed mutual exclusion and deadlock detection algorithms.
- To understand the significance of agreement, fault tolerance and recovery protocols in Distributed Systems.
- To learn the characteristics of peer-to-peer and distributed shared memory systems.

UNIT I INTRODUCTION

UNIT II MESSAGE ORDERING & SNAPSHOTS

UNIT III DISTRIBUTED MUTEX & DEADLOCK
UNIT IV RECOVERY & CONSENSUS

UNIT V P2P & DISTRIBUTED SHARED MEMORY

TOTAL: 45 PERIODS

OUTCOMES:
At the end of this course, the students will be able to:
- Elucidate the foundations and issues of distributed systems
- Understand the various synchronization issues and global state for distributed systems.
- Understand the Mutual Exclusion and Deadlock detection algorithms in distributed systems
- Describe the agreement protocols and fault tolerance mechanisms in distributed systems.
- Describe the features of peer-to-peer and distributed shared memory systems

TEXT BOOKS:

REFERENCES:

CS8661 INTERNET PROGRAMMING LABORATORY

OBJECTIVES:
- To be familiar with Web page design using HTML/XML and style sheets
- To be exposed to creation of user interfaces using Java frames and applets.
- To learn to create dynamic web pages using server side scripting.
- To learn to write Client Server applications.
- To be familiar with the PHP programming.
- To be exposed to creating applications with AJAX

LIST OF EXPERIMENTS
1. Create a web page with the following using HTML
 a. To embed a map in a web page
 b. To fix the hot spots in that map
 c. Show all the related information when the hot spots are clicked.
2. Create a web page with the following.
 a. Cascading style sheets.
 b. Embedded style sheets.
 c. Inline style sheets. Use our college information for the web pages.
3. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
4. Write programs in Java using Servlets:
 i. To invoke servlets from HTML forms
 ii. Session tracking using hidden form fields and Session tracking for a hit count
5. Write programs in Java to create three-tier applications using servlets for conducting online examination for displaying student mark list. Assume that student information is available in a database which has been stored in a database server.
6. Install TOMCAT web server. Convert the static web pages of programs into dynamic web pages using servlets (or JSP) and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
7. Redo the previous task using JSP by converting the static web pages into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database.
8. Create and save an XML document at the server, which contains 10 users information. Write a Program, which takes user Id as an input and returns the User details by taking the user information from the XML document.
9. i. Validate the form using PHP regular expression.
 ii. PHP stores a form data into database.
10. Write a web service for finding what people think by asking 500 people’s opinion for any consumer product.

TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Construct Web pages using HTML/XML and style sheets.
- Build dynamic web pages with validation using Java Script objects and by applying different event handling mechanisms.
- Develop dynamic web pages using server side scripting.
- Use PHP programming to develop web applications.
- Construct web applications using AJAX and web services.

SOFTWARE REQUIRED:
- Dream Weaver or Equivalent, MySQL or Equivalent, Apache Server, WAMP/XAMPP

CS8662 MOBILE APPLICATION DEVELOPMENT LABORATORY

OBJECTIVES:
- To understand the components and structure of mobile application development frameworks for Android and windows OS based mobiles.
- To understand how to work with various mobile application development frameworks.
- To learn the basic and important design concepts and issues of development of mobile applications.
- To understand the capabilities and limitations of mobile devices.
LIST OF EXPERIMENTS
1. Develop an application that uses GUI components, Font and Colours
2. Develop an application that uses Layout Managers and event listeners.
3. Write an application that draws basic graphical primitives on the screen.
4. Develop an application that makes use of databases.
5. Develop an application that makes use of Notification Manager
6. Implement an application that uses Multi-threading
7. Develop a native application that uses GPS location information
8. Implement an application that writes data to the SD card.
9. Implement an application that creates an alert upon receiving a message
10. Write a mobile application that makes use of RSS feed
11. Develop a mobile application to send an email.
12. Develop a Mobile application for simple needs (Mini Project)

TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Develop mobile applications using GUI and Layouts.
- Develop mobile applications using Event Listener.
- Develop mobile applications using Databases.
- Develop mobile applications using RSS Feed, Internal/External Storage, SMS, Multi-threading and GPS.
- Analyze and discover own mobile app for simple needs.

REFERENCES:
1. Build Your Own Security Lab, Michael Gregg, Wiley India

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS: SOFTWARE: C / C++ / Java or equivalent compiler GnuPG, Snort, N-Stalker or Equivalent HARDWARE: Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more.

PROFESSIONAL COMMUNICATION

OBJECTIVES:
The course aims to:
- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully.

UNIT I
Introduction to Soft Skills-- Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Time Management—General awareness of Current Affairs

UNIT II
Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

UNIT III
Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic — questioning and clarifying –GD strategies- activities to improve GD skills
UNIT IV
Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview – FAQs related to job interviews

UNIT V
Recognizing differences between groups and teams- managing time-managing stress- networking professionally- respecting social protocols-understanding career management-developing a long-term career plan-making career changes

OUTCOMES:
At the end of the course Learners will be able to:
- Make effective presentations
- Participate confidently in Group Discussions.
- Attend job interviews and be successful in them.
- Develop adequate Soft Skills required for the workplace

Recommended Software
1. Globearena
2. Win English

REFERENCES:

MG8591 PRINCIPLES OF MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
- To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS 9

UNIT II PLANNING 9
UNIT III ORGANISING

UNIT IV DIRECTING

UNIT V CONTROLLING
System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

OUTCOMES:
- Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXTBOOKS:

REFERENCES:

CS8792 CRYPTOGRAPHY AND NETWORK SECURITY

OBJECTIVES:
- To understand Cryptography Theories, Algorithms and Systems.
- To understand necessary Approaches and Techniques to build protection mechanisms in order to secure computer networks.

UNIT I INTRODUCTION
UNIT II SYMMETRIC KEY CRYPTOGRAPHY

UNIT III PUBLIC KEY CRYPTOGRAPHY

UNIT IV MESSAGE AUTHENTICATION AND INTEGRITY

UNIT V SECURITY PRACTICE AND SYSTEM SECURITY

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Understand the fundamentals of networks security, security architecture, threats and vulnerabilities
- Apply the different cryptographic operations of symmetric cryptographic algorithms
- Apply the different cryptographic operations of public key cryptography
- Apply the various Authentication schemes to simulate different applications.
- Understand various Security practices and System security standards

TEXT BOOK:

REFERENCES:
1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

CS8791 CLOUD COMPUTING

OBJECTIVES:
- To understand the concept of cloud computing.
- To appreciate the evolution of cloud from the existing technologies.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.
UNIT I INTRODUCTION

UNIT II CLOUD ENABLING TECHNOLOGIES

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD

UNIT V CLOUD TECHNOLOGIES AND ADVANCEMENTS

TOTAL: 45 PERIODS

OUTCOMES:
On Completion of the course, the students should be able to:

- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Evaluate and choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

TEXT BOOKS:

REFERENCES:
CS8711 CLOUD COMPUTING LABORATORY L T P C 0 4 2

OBJECTIVES:
- To develop web applications in cloud
- To learn the design and development process involved in creating a cloud based application
- To learn to implement and use parallel programming using Hadoop

1. Install Virtualbox/VMware Workstation with different flavours of linux or windows OS on top of windows7 or 8.
2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
4. Use GAE launcher to launch the web applications.
5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
7. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
8. Install Hadoop single node cluster and run simple applications like wordcount.

OUTCOMES:
On completion of this course, the students will be able to:
- Configure various virtualization tools such as Virtual Box, VMware workstation.
- Design and deploy a web application in a PaaS environment.
- Learn how to simulate a cloud environment to implement new schedulers.
- Install and use a generic cloud environment that can be used as a private cloud.
- Manipulate large data sets in a parallel environment.

IT8761 SECURITY LABORATORY L T P C 0 4 2

OBJECTIVES:
- To learn different cipher techniques
- To implement the algorithms DES, RSA,MD5,SHA-1
- To use network security tools and vulnerability assessment tools

LIST OF EXPERIMENTS
1. Perform encryption, decryption using the following substitution techniques
 (i) Ceaser cipher, (ii) playfair cipher (iii) Hill Cipher (iv) Vigener cipher
2. Perform encryption and decryption using following transposition techniques
 i) Rail fence ii) row & Column Transformation
3. Apply DES algorithm for practical applications.
4. Apply AES algorithm for practical applications.
5. Implement RSA Algorithm using HTML and JavaScript
7. Calculate the message digest of a text using the SHA-1 algorithm.
8. Implement the SIGNATURE SCHEME - Digital Signature Standard.
9. Demonstrate intrusion detection system (ids) using any tool eg. Snort or any other s/w.
10. Automated Attack and Penetration Tools
 Exploring N-Stalker, a Vulnerability Assessment Tool
11. Defeating Malware
 i) Building Trojans ii) Rootkit Hunter

TOTAL: 60 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:

- Develop code for classical Encryption Techniques to solve the problems.
- Build cryptosystems by applying symmetric and public key encryption algorithms.
- Construct code for authentication algorithms.
- Develop a signature scheme using Digital signature standard.
- Demonstrate the network security system using open source tools

REFERENCES:
1. Build Your Own Security Lab, Michael Gregg, Wiley India

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: SOFTWARE: C / C++ / Java or equivalent compiler GnuPG, Snort, N-Stalker or Equivalent HARDWARE: Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more.

CS8075 DATA WAREHOUSING AND DATA MINING

OBJECTIVES:
- To understand data warehouse concepts, architecture, business analysis and tools
- To understand data pre-processing and data visualization techniques
- To study algorithms for finding hidden and interesting patterns in data
- To understand and apply various classification and clustering techniques using tools.

UNIT I DATA WAREHOUSING, BUSINESS ANALYSIS AND ON-LINE ANALYTICAL PROCESSING (OLAP) 9

UNIT II DATA MINING – INTRODUCTION 9
Introduction to Data Mining Systems – Knowledge Discovery Process – Data Mining Techniques – Issues – applications- Data Objects and attribute types, Statistical description of data, Data Preprocessing – Cleaning, Integration, Reduction, Transformation and discretization, Data Visualization, Data similarity and dissimilarity measures.

UNIT III DATA MINING - FREQUENT PATTERN ANALYSIS 9
Mining Frequent Patterns, Associations and Correlations – Mining Methods- Pattern Evaluation Method – Pattern Mining in Multilevel, Multi Dimensional Space – Constraint Based Frequent Pattern Mining, Classification using Frequent Patterns
UNIT IV CLASSIFICATION AND CLUSTERING 9
Decision Tree Induction - Bayesian Classification – Rule Based Classification – Classification by Back Propagation – Support Vector Machines — Lazy Learners – Model Evaluation and Selection-Techniques to improve Classification Accuracy.

UNIT V WEKA TOOL 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students should be able to:
- Design a Data warehouse system and perform business analysis with OLAP tools.
- Apply suitable pre-processing and visualization techniques for data analysis
- Apply frequent pattern and association rule mining techniques for data analysis
- Apply appropriate classification and clustering techniques for data analysis

TEXT BOOK:

REFERENCES:

IT8076 SOFTWARE TESTING L T P C
3 0 0 3

OBJECTIVES:
- To learn the criteria for test cases.
- To learn the design of test cases.
- To understand test management and test automation techniques.
- To apply test metrics and measurements.

UNIT I INTRODUCTION 9
UNIT II TEST CASE DESIGN STRATEGIES 9

UNIT III LEVELS OF TESTING 9

UNIT IV TEST MANAGEMENT 9

UNIT V TEST AUTOMATION 9

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students will be able to:
• Design test cases suitable for a software development for different domains.
• Identify suitable tests to be carried out.
• Prepare test planning based on the document.
• Document test plans and test cases designed.
• Use automatic testing tools.
• Develop and validate a test plan.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To learn the architecture and programming of ARM processor.
- To become familiar with the embedded computing platform design and analysis.
- To get thorough knowledge in interfacing concepts
- To design an embedded system and to develop programs

UNIT I | INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS | 9
Complex systems and micro processors – Embedded system design process – Design example: Model train controller - Instruction sets preliminaries - ARM Processor – CPU: programming input and output - supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPU performance- CPU power consumption.

UNIT II | EMBEDDED COMPUTING PLATFORM DESIGN | 9
The CPU Bus-Memory devices and systems– Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs- Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

UNIT III | SENSOR INTERFACING WITH ARDUINO | 9
Basics of hardware design and functions of basic passive components-sensors and actuators- Arduino code - library file for sensor interfacing-construction of basic applications

UNIT IV | EMBEDDED FIRMWARE | 9
Reset Circuit, Brown-out Protection Circuit-Oscillator Unit - Real Time Clock-Watchdog Timer - Embedded Firmware Design Approaches and Development Languages.

UNIT V | EMBEDDED C PROGRAMMING | 9
Introduction-Creating ‘hardware delays’ using Timer 0 and Timer 1-Reading switches- Adding Structure to the code-Generating a minimum and maximum delay-Example: Creating a portable hardware delay- Timeout mechanisms-Creating loop timeouts-Testing loop timeouts- hardware timeouts-Testing a hardware timeout

OUTCOMES:
Upon completion of the course, students will be able to:
- Describe the architecture and programming of ARM processor.
- Explain the concepts of embedded systems
- Understand the Concepts of peripherals and interfacing of sensors.
- Capable of using the system design techniques to develop firmware
- Illustrate the code for constructing a system

TEXT BOOKS:
2. https://www.coursera.org/learn/interface-with-arduino#syllabus (Unit III)
REFERENCES:
 Cengage Learning, 2012

CS8072 AGILE METHODOLOGIES L T P C
3 0 0 3

OBJECTIVES:
- To provide students with a theoretical as well as practical understanding of agile software development practices and how small teams can apply them to create high-quality software.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of Agile development and testing techniques.
- To understand the benefits and pitfalls of working in an Agile team.
- To understand Agile development and testing.

UNIT I AGILE METHODOLOGY 9
Theories for Agile Management – Agile Software Development – Traditional Model vs. Agile Model
- Classification of Agile Methods – Agile Manifesto and Principles – Agile Project Management – Agile Team Interactions – Ethics in Agile Teams - Agility in Design, Testing – Agile Documentations – Agile Drivers, Capabilities and Values

UNIT II AGILE PROCESSES 9

UNIT III AGILITY AND KNOWLEDGE MANAGEMENT 9

UNIT IV AGILITY AND REQUIREMENTS ENGINEERING 9

UNIT V AGILITY AND QUALITY ASSURANCE 9

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:
- Realize the importance of interacting with business stakeholders in determining the requirements for a software system.
- Perform iterative software development processes: how to plan them, how to execute them.
- Point out the impact of social aspects on software development success.
- Develop techniques and tools for improving team collaboration and software quality.
- Perform Software process improvement as an ongoing task for development teams.
- Show how agile approaches can be scaled up to the enterprise level.

TEXT BOOKS:

REFERENCES:

CS8077 GRAPH THEORY AND APPLICATIONS

OBJECTIVES:
- To understand fundamentals of graph theory.
- To study proof techniques related to various concepts in graphs.
- To explore modern applications of graph theory.

UNIT I
Introduction - Graph Terminologies - Types of Graphs - Sub Graph- Multi Graph - Regular Graph - Isomorphism - Isomorphic Graphs - Sub-graph - Euler graph - Hamiltonian Graph - Related Theorems.

UNIT II

UNIT III
Network Flows - Planar Graph - Representation - Detection - Dual Graph - Geometric and Combinatorial Dual - Related Theorems - Digraph - Properties - Euler Digraph.

UNIT IV
UNIT V
Graph Algorithms- Connectedness and Components- Spanning Tree- Fundamental Circuits- Cut Vertices- Directed Circuits- Shortest Path - Applications overview.

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of this course, the students should be able to
- Understand the basic concepts of graphs, and different types of graphs
- Understand the properties, theorems and be able to prove theorems.
- Apply suitable graph model and algorithm for solving applications.

TEXT BOOKS:

REFERENCES:

IT8071 DIGITAL SIGNAL PROCESSING L T P C
3 0 0 3

OBJECTIVES:
- To understand the basics of discrete time signals, systems and their classifications.
- To analyze the discrete time signals in both time and frequency domain.
- To design lowpass digital IIR filters according to predefined specifications based on analog filter theory and analog-to-digital filter transformation.
- To design Linear phase digital FIR filters using fourier method, window technique
- To realize the concept and usage of DSP in various engineering fields.

UNIT I DISCRETE TIME SIGNALS AND SYSTEMS 9

UNIT II ANALYSIS OF LTI DISCRETE TIME SIGNALS AND SYSTEMS 9

UNIT III INFINITE IMPULSE RESPONSE FILTERS 9
UNIT IV FINITE IMPULSE RESPONSE FILTERS 9

UNIT V APPLICATIONS OF DSP 9

OUTCOMES:
At the end of the course, the students should be able to:
- Perform mathematical operations on signals.
- Understand the sampling theorem and perform sampling on continuous-time signals to get discrete time signal by applying advanced knowledge of the sampling theory.
- Transform the time domain signal into frequency domain signal and vice-versa.
- Apply the relevant theoretical knowledge to design the digital IIR/FIR filters for the given analog specifications.

TEXT BOOK:

REFERENCES

GE8075 INTELLECTUAL PROPERTY RIGHTS 3 0 0 3

OBJECTIVE:
- To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION 9
Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO – TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs 10
Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad

UNIT III AGREEMENTS AND LEGISLATIONS 10
UNIT IV DIGITAL PRODUCTS AND LAW 9

UNIT V ENFORCEMENT OF IPRs 7
Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

OUTCOME:
• Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXT BOOKS:

REFERENCES:

CS8091 BIG DATA ANALYTICS L T P C
3 0 0 3

OBJECTIVES:
• To know the fundamental concepts of big data and analytics.
• To explore tools and practices for working with big data
• To learn about stream computing.
• To know about the research that requires the integration of large amounts of data.

UNIT I INTRODUCTION TO BIG DATA 9
Evolution of Big data - Best Practices for Big data Analytics - Big data characteristics - Validating - The Promotion of the Value of Big Data - Big Data Use Cases- Characteristics of Big Data Applications - Perception and Quantification of Value -Understanding Big Data Storage - A General Overview of High-Performance Architecture - HDFS - MapReduce and YARN - Map Reduce Programming Model

UNIT II CLUSTERING AND CLASSIFICATION 9
UNIT III ASSOCIATION AND RECOMMENDATION SYSTEM 9

UNIT IV STREAM MEMORY 9

UNIT V NOSQL DATA MANAGEMENT FOR BIG DATA AND VISUALIZATION 9
NoSQL Databases : Schema-less Models": Increasing Flexibility for Data Manipulation-Key Value Stores- Document Stores - Tabular Stores - Object Data Stores - Graph Databases Hive - Sharding — Hbase – Analyzing big data with twitter - Big data for E-Commerce Big data for blogs - Review of Basic Data Analytic Methods using R.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Work with big data tools and its analysis techniques
- Analyze data by utilizing clustering and classification algorithms
- Learn and apply different mining algorithms and recommendation systems for large volumes of data
- Perform analytics on data streams
- Learn NoSQL databases and management.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To understand the need for machine learning for various problem solving
- To study the various supervised, semi-supervised and unsupervised learning algorithms in machine learning
- To understand the latest trends in machine learning
- To design appropriate machine learning algorithms for problem solving

UNIT I INTRODUCTION 9

UNIT II NEURAL NETWORKS AND GENETIC ALGORITHMS 9

UNIT III BAYESIAN AND COMPUTATIONAL LEARNING 9

UNIT IV INSTANT BASED LEARNING 9
K- Nearest Neighbour Learning – Locally weighted Regression – Radial Basis Functions – Case Based Learning.

UNIT V ADVANCED LEARNING 9

TOTAL :45 PERIODS

OUTCOMES:
At the end of the course, the students will be able to
- Differentiate between supervised, unsupervised, semi-supervised machine learning approaches
- Discuss the decision tree algorithm and identity and overcome the problem of overfitting
- Discuss and apply the back propagation algorithm and genetic algorithms to various problems
- Apply the Bayesian concepts to machine learning
- Analyse and suggest appropriate machine learning approaches for various types of problems

TEXT BOOK:

REFERENCES:
OBJECTIVES:

- To develop an understanding and awareness how issues such as content, information architecture, motion, sound, design, and technology merge to form effective and compelling interactive experiences for a wide range of audiences and end users.
- To become familiar with various software programs used in the creation and implementation of multimedia.
- To appreciate the importance of technical ability and creativity within design practice.
- To gain knowledge about graphics hardware devices and software used.
- To understand the two-dimensional graphics and their transformations.
- To understand the three-dimensional graphics and their transformations.
- To appreciate illumination and color models.
- To become familiar with understand clipping techniques.
- To become familiar with Blender Graphics.

UNIT I ILLUMINATION AND COLOR MODELS 9
Light sources - basic illumination models – halftone patterns and dithering techniques; Properties of light - Standard primaries and chromaticity diagram; Intuitive colour concepts - RGB colour model - YIQ colour model - CMY colour model - HSV colour model - HLS colour model; Colour selection. Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.

UNIT II TWO-DIMENSIONAL GRAPHICS 9
Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; window-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.

UNIT III THREE-DIMENSIONAL GRAPHICS 9
Three dimensional concepts; Three dimensional object representations – Polygon surfaces-Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces. TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations – Translation, Rotation, Scaling, composite transformations; Three dimensional viewing – viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods.

UNIT IV MULTIMEDIA SYSTEM DESIGN & MULTIMEDIA FILE HANDLING 9

UNIT V HYPERMEDIA 9

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the students should be able to:

- Design two dimensional graphics.
- Apply two dimensional transformations.
- Design three dimensional graphics.
- Apply three dimensional transformations.
- Apply Illumination and color models.
- Apply clipping techniques to graphics.
- Understand Different types of Multimedia File Format
- Design Basic 3d Scenes using Blender

TEXT BOOKS:

REFERENCES:

IT8075 SOFTWARE PROJECT MANAGEMENT

OBJECTIVES:

- To understand the Software Project Planning and Evaluation techniques.
- To plan and manage projects at each stage of the software development life cycle (SDLC).
- To learn about the activity planning and risk management principles.
- To manage software projects and control software deliverables.
- To develop skills to manage the various phases involved in project management and people management.
- To deliver successful software projects that support organization’s strategic goals.

UNIT I PROJECT EVALUATION AND PROJECT PLANNING
UNIT II PROJECT LIFE CYCLE AND EFFORT ESTIMATION 9

UNIT III ACTIVITY PLANNING AND RISK MANAGEMENT 9

UNIT IV PROJECT MANAGEMENT AND CONTROL 9

UNIT V STAFFING IN SOFTWARE PROJECTS 9

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:

- Understand Project Management principles while developing software.
- Gain extensive knowledge about the basic project management concepts, framework and the process models.
- Obtain adequate knowledge about software process models and software effort estimation techniques.
- Estimate the risks involved in various project activities.
- Define the checkpoints, project reporting structure, project progress and tracking mechanisms using project management principles.
- Learn staff selection process and the issues related to people management.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.
- To understand data analytics and cloud in the context of IoT
- To develop IoT infrastructure for popular applications

UNIT I FUNDAMENTALS OF IoT

UNIT II IoT PROTOCOLS
IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks – Application Transport Methods: Supervisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQTT

UNIT III DESIGN AND DEVELOPMENT
Design Methodology - Embedded computing logic - Microcontroller, System on Chips - IoT system building blocks - Arduino - Board details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Python Programming.

UNIT IV DATA ANALYTICS AND SUPPORTING SERVICES

UNIT V CASE STUDIES/INDUSTRIAL APPLICATIONS
Cisco IoT system - IBM Watson IoT platform – Manufacturing - Converged Plantwide Ethernet Model (CPwE) – Power Utility Industry – GridBlocks Reference Model - Smart and Connected Cities: Layered architecture, Smart Lighting, Smart Parking Architecture and Smart Traffic Control

OUTCOMES:
Upon completion of the course, the student should be able to:
- Explain the concept of IoT.
- Analyze various protocols for IoT.
- Design a PoC of an IoT system using Rasperry Pi/Arduino
- Apply data analytics and use cloud offerings related to IoT.
- Analyze applications of IoT in real time scenario

TEXTBOOK:
REFERENCES:
https://www.arduino.cc/

IT8074 SERVICE ORIENTED ARCHITECTURE L T P C
45 3 0 0 3

OBJECTIVES:
- To learn fundamentals of XML
- To provide an overview of Service Orientated Architecture and Web services and their importance
- To learn web services standards and technologies
- To learn service oriented analysis and design for developing SOA based applications

UNIT I XML 9

UNIT II SERVICE ORIENTED ARCHITECTURE (SOA) BASICS 9
Characteristics of SOA, Benefits of SOA, Comparing SOA with Client-Server and Distributed architectures --- Principles of Service Orientation – Service layers

UNIT III WEB SERVICES (WS) AND STANDARDS 8

UNIT IV WEB SERVICES EXTENSIONS 8

UNIT V SERVICE ORIENTED ANALYSIS AND DESIGN 11
SOA delivery strategies – Service oriented analysis – Service Modelling – Service oriented design – Standards and composition guidelines -- Service design – Business process design – Case Study

TOTAL: 45 PERIODS

OUTCOMES:
Upon successful completion of this course, the students will be able to:
- Understand XML technologies
- Understand service orientation, benefits of SOA
- Understand web services and WS standards
- Use web services extensions to develop solutions
- Understand and apply service modeling, service oriented analysis and design for application development
TEXTBOOKS:

REFERENCES:

GE8077 TOTAL QUALITY MANAGEMENT

OBJECTIVE:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

UNIT II TQM PRINCIPLES
Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II
Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY MANAGEMENT SYSTEM

OUTCOME:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.
TEXT BOOK:

REFERENCES:
4. ISO9001-2015 standards

CS8083 MULTI-CORE ARCHITECTURES AND PROGRAMMING

OBJECTIVES:
- To understand the need for multi-core processors, and their architecture.
- To understand the challenges in parallel and multi-threaded programming.
- To learn about the various parallel programming paradigms.
- To develop multicore programs and design parallel solutions.

UNIT I MULTI-CORE PROCESSORS

UNIT II PARALLEL PROGRAM CHALLENGES
- Performance – Scalability – Synchronization and data sharing – Data races – Synchronization primitives (mutexes, locks, semaphores, barriers) – deadlocks and livelocks – communication between threads (condition variables, signals, message queues and pipes).

UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP

UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI
- MPI program execution – MPI constructs – libraries – MPI send and receive – Point-to-point and Collective communication – MPI derived datatypes – Performance evaluation

UNIT V PARALLEL PROGRAM DEVELOPMENT
- Case studies - n-Body solvers – Tree Search – OpenMP and MPI implementations and comparison.

OUTCOMES:
At the end of the course, the students should be able to:
- Describe multicore architectures and identify their characteristics and challenges.
- Identify the issues in programming Parallel Processors.
- Write programs using OpenMP and MPI.
- Design parallel programming solutions to common problems.
- Compare and contrast programming for serial processors and programming for parallel processors.
TEXT BOOKS:

REFERENCES:

CS8079 HUMAN COMPUTER INTERACTION L T P C
 3 0 0 3

OBJECTIVES:
• To learn the foundations of Human Computer Interaction.
• To become familiar with the design technologies for individuals and persons with disabilities.
• To be aware of mobile HCI.
• To learn the guidelines for user interface.

UNIT I FOUNDATIONS OF HCI 9

UNIT II DESIGN & SOFTWARE PROCESS 9

UNIT III MODELS AND THEORIES 9
HCI Models: Cognitive models: Socio-Organizational issues and stakeholder requirements – Communication and collaboration models-Hypertext, Multimedia and WWW.

UNIT IV MOBILE HCI 9

UNIT V WEB INTERFACE DESIGN 9
Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow - Case Studies

TOTAL :45 PERIODS

OUTCOMES:
Upon completion of the course, the students should be able to:
• Design effective dialog for HCI
• Design effective HCI for individuals and persons with disabilities.
• Assess the importance of user feedback.
• Explain the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites.
• Develop meaningful user interface.
TEXT BOOKS:

CS8073 C# AND .NET PROGRAMMING
L T P C
3 0 0 3

OBJECTIVES:
- To learn basic programming in C# and the object oriented programming concepts.
- To update and enhance skills in writing Windows applications, ADO.NET and ASP .NET.
- To study the advanced concepts in data connectivity, WPF, WCF and WWF with C# and .NET 4.5.
- To implement mobile applications using .Net compact framework
- To understand the working of base class libraries, their operations and manipulation of data using XML.

UNIT I C# LANGUAGE BASICS
.Net Architecture - Core C# - Variables - Data Types - Flow control - Objects and Types- Classes and Structs - Inheritance- Generics – Arrays and Tuples - Operators and Casts - Indexers

UNIT II C# ADVANCED FEATURES
Delegates - Lambdas - Lambda Expressions - Events - Event Publisher - Event Listener - Strings and Regular Expressions - Generics - Collections - Memory Management and Pointers - Errors and Exceptions - Reflection

UNIT III BASE CLASS LIBRARIES AND DATA MANIPULATION

UNIT IV WINDOW BASED APPLICATIONS, WCF AND WWF
Window based applications - Core ASP.NET- ASP.NET Web forms -Windows Communication Foundation (WCF)- Introduction to Web Services - .Net Remoting - Windows Service - Windows Workflow Foundation (WWF) - Activities – Workflows

UNIT V .NET FRAMEWORK AND COMPACT FRAMEWORK

TOTAL :45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:
- Write various applications using C# Language in the .NET Framework.
- Develop distributed applications using .NET Framework.
- Create mobile applications using .NET compact Framework.

TEXT BOOKS:

REFERENCES

CS8088 WIRELESS ADHOC AND SENSOR NETWORKS L T P C 3 0 0 3

OBJECTIVES:
- To learn about the issues and challenges in the design of wireless ad hoc networks.
- To understand the working of MAC and Routing Protocols for ad hoc and sensor networks
- To learn about the Transport Layer protocols and their QoS for ad hoc and sensor networks.
- To understand various security issues in ad hoc and sensor networks and the corresponding solutions.

UNIT I MAC & ROUTING IN AD HOC NETWORKS 9

UNIT II TRANSPORT & QOS IN AD HOC NETWORKS 9

UNIT III MAC & ROUTING IN WIRELESS SENSOR NETWORKS 9
UNIT IV TRANSPORT & QOS IN WIRELESS SENSOR NETWORKS

UNIT V SECURITY IN AD HOC AND SENSOR NETWORKS

TOTAL :45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:

- Identify different issues in wireless ad hoc and sensor networks.
- To analyze protocols developed for ad hoc and sensor networks.
- To identify and understand security issues in ad hoc and sensor networks.

TEXT BOOKS:

REFERENCES

CS8071 ADVANCED TOPICS ON DATABASES L T P C 3 0 0 3

OBJECTIVES:

- To learn the modeling and design of databases.
- To acquire knowledge on parallel and distributed databases and their applications.
- To study the usage and applications of Object Oriented and Intelligent databases.
- To understand the usage of advanced data models.
- To learn emerging databases such as XML, Cloud and Big Data.
- To acquire inquisitive attitude towards research topics in databases.

UNIT I PARALLEL AND DISTRIBUTED DATABASES

UNIT II OBJECT AND OBJECT RELATIONAL DATABASES 9
Concepts for Object Databases: Object Identity – Object structure – Type Constructors –
Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance –
Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL –
OQL – Object Relational and Extended – Relational Systems: Object Relational features in
SQL/Oracle – Case Studies.

UNIT III INTELLIGENT DATABASES 9
Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications-
Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases-
TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules-Syntax and
Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in
SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures-
Spatial Access Methods- Spatial DB Implementation.

UNIT IV ADVANCED DATA MODELS 9
Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management -
Location Dependent Data Distribution - Mobile Transaction Models -Concurrency Control -
Transaction Commit Protocols- Multimedia Databases- Information Retrieval- Data Warehousing-
Data Mining- Text Mining.

UNIT V EMERGING TECHNOLOGIES 9
in Databases-XML and SQL- Native XML Databases- Web Databases- Geographic Information
Systems- Biological Data Management- Cloud Based Databases: Data Storage Systems on the
Cloud- Cloud Storage Architectures-Cloud Data Models- Query Languages- Introduction to Big
Data-Storage-Analysis.

TOTAL: 45 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able,
- To develop in-depth understanding of relational databases and skills to optimize database
 performance in practice.
- To understand and critique on each type of databases.
- To design faster algorithms in solving practical database problems.
- To implement intelligent databases and various data models.

TEXT BOOKS:
 Pearson, 2011.
2. Thomas Cannolly and Carolyn Begg, “Database Systems, A Practical Approach to Design,

REFERENCES:
2. C.J.Date, A.Kannan, S.Swamynathan, “An Introduction to Database Systems”, Eighth
3. Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T.Snodgrass, V.S.Subrahmanian,
OBJECTIVES:
- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them into design specifications
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the End of Life (EoL) support activities for engineering customers

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT 9

UNIT II REQUIREMENTS AND SYSTEM DESIGN 9

UNIT III DESIGN AND TESTING 9

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY 9

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:

- Define, formulate and analyze a problem
- Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- Work independently as well as in teams
- Manage a project from start to finish

TEXTBOOKS:
1. Book specially prepared by NASSCOM as per the MoU.

REFERENCES:

GE8074 HUMAN RIGHTS L T P C
3 0 0 3

OBJECTIVE :
- To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

UNIT II

UNIT III
Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV
Human Rights in India – Constitutional Provisions / Guarantees.

UNIT V

TOTAL: 45 PERIODS
OUTCOME:

- Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

GE8071 DISASTER MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR).
- To enhance awareness of institutional processes in the country and develop rudimentary ability to respond to their surroundings with potential.
- To develop rudimentary ability to respond to their surroundings with potential.

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts - in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.
UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to
- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXTBOOKS:

REFERENCES
1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005

EC8093 DIGITAL IMAGE PROCESSING

OBJECTIVES:
- To become familiar with digital image fundamentals
- To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- To learn concepts of degradation function and restoration techniques.
- To study the image segmentation and representation techniques.
- To become familiar with image compression and recognition methods

UNIT I DIGITAL IMAGE FUNDAMENTALS

UNIT II IMAGE ENHANCEMENT
UNIT III IMAGE RESTORATION 9

UNIT IV IMAGE SEGMENTATION 9

UNIT V IMAGE COMPRESSION AND RECOGNITION 9
Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on matching.

TOTAL 45 PERIODS

OUTCOMES:
At the end of the course, the students should be able to:
- Know and understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.
- Operate on images using the techniques of smoothing, sharpening and enhancement.
- Understand the restoration concepts and filtering techniques.
- Learn the basics of segmentation, features extraction, compression and recognition methods for color models.

TEXT BOOKS:

REFERENCES:

CS8085 SOCIAL NETWORK ANALYSIS L T P C
3 0 0 3

OBJECTIVES:
- To understand the concept of semantic web and related applications.
- To learn knowledge representation using ontology.
- To understand human behaviour in social web and related communities.
- To learn visualization of social networks.
UNIT I INTRODUCTION

UNIT II MODELLING, AGGREGATING AND KNOWLEDGE REPRESENTATION

UNIT III EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWORKS

UNIT IV PREDICTING HUMAN BEHAVIOUR AND PRIVACY ISSUES

UNIT V VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students should be able to:
- Develop semantic web related applications.
- Represent knowledge using ontology.
- Predict human behaviour in social web and related communities.
- Visualize social networks.

TEXT BOOKS:
REFERENCES:

IT8073 INFORMATION SECURITY

OBJECTIVES:
- To understand the basics of Information Security
- To know the legal, ethical and professional issues in Information Security
- To know the aspects of risk management
- To become aware of various standards in this area
- To know the technological aspects of Information Security

UNIT I INTRODUCTION

UNIT II SECURITY INVESTIGATION

UNIT III SECURITY ANALYSIS

UNIT IV LOGICAL DESIGN

UNIT V PHYSICAL DESIGN

TOTAL 45 PERIODS
OUTCOMES:
At the end of this course, the students should be able to:
- Discuss the basics of information security
- Illustrate the legal, ethical and professional issues in information security
- Demonstrate the aspects of risk management.
- Become aware of various standards in the Information Security System
- Design and implementation of Security Techniques.

TEXT BOOK:

REFERENCES

CS8087 SOFTWARE DEFINED NETWORKS L T P C
3 0 0 3

OBJECTIVES:
- To learn the fundamentals of software defined networks.
- To understand the separation of the data plane and the control plane.
- To study about the SDN Programming.
- To study about the various applications of SDN

UNIT I INTRODUCTION 9
History of Software Defined Networking (SDN) – Modern Data Center – Traditional Switch Architecture – Why SDN – Evolution of SDN – How SDN Works – Centralized and Distributed Control and Date Planes

UNIT II OPEN FLOW & SDN CONTROLLERS 9
Open Flow Specification – Drawbacks of Open SDN, SDN via APIs, SDN via Hypervisor-Based Overlays – SDN via Opening up the Device – SDN Controllers – General Concepts

UNIT III DATA CENTERS 9
Multitenant and Virtualized Multitenant Data Center – SDN Solutions for the Data Center Network – VLANs – EVPN – VxLAN – NVGRE

UNIT IV SDN PROGRAMMING 9
Programming SDNs: Northbound Application Programming Interface, Current Languages and Tools, Composition of SDNs – Network Functions Virtualization (NFV) and Software Defined Networks: Concepts, Implementation and Applications

UNIT V SDN 9
Juniper SDN Framework – IETF SDN Framework – Open Daylight Controller – Floodlight Controller – Bandwidth Calendaring – Data Center Orchestration

TOTAL : 45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:

- Analyze the evolution of software defined networks
- Express the various components of SDN and their uses
- Explain the use of SDN in the current networking scenario
- Design and develop various applications of SDN

TEXT BOOKS:

REFERENCES:

CS8074 CYBER FORENSICS L T P C
3 0 0 3

OBJECTIVES:
- To learn computer forensics
- To become familiar with forensics tools
- To learn to analyze and validate forensics data

UNIT I INTRODUCTION TO COMPUTER FORENSICS 9

UNIT II EVIDENCE COLLECTION AND FORENSICS TOOLS 9

UNIT III ANALYSIS AND VALIDATION 9
Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

UNIT IV ETHICAL HACKING 9
Introduction to Ethical Hacking - Footprinting and Reconnaissance - Scanning Networks - Enumeration - System Hacking - Malware Threats - Sniffing

UNIT V ETHICAL HACKING IN WEB 9

TOTAL 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

- Understand the basics of computer forensics
- Apply a number of different computer forensic tools to a given scenario
- Analyze and validate forensics data
- Identify the vulnerabilities in a given network infrastructure
- Implement real-world hacking techniques to test system security

TEXT BOOKS:

REFERENCES

CS8086 SOFT COMPUTING L T P C
3 0 0 3

OBJECTIVES:

- To learn the basic concepts of Soft Computing
- To become familiar with various techniques like neural networks, genetic algorithms and fuzzy systems.
- To apply soft computing techniques to solve problems.

UNIT I INTRODUCTION TO SOFT COMPUTING 9

UNIT II ARTIFICIAL NEURAL NETWORKS 9
Back propagation Neural Networks - Kohonen Neural Network-Learning Vector Quantization -Hamming Neural Network - Hopfield Neural Network- Bi-directional Associative Memory -Adaptive Resonance Theory Neural Networks- Support Vector Machines - Spike Neuron Models.

UNIT III FUZZY SYSTEMS 9

UNIT IV GENETIC ALGORITHMS 9
UNIT V HYBRID SYSTEMS 9

OUTCOMES:
Upon completion of this course, the students should be able to
- Apply suitable soft computing techniques for various applications.
- Integrate various soft computing techniques for complex problems.

TEXT BOOKS:

REFERENCES:

GE8076 PROFESSIONAL ETHICS IN ENGINEERING LT P C 3 0 0 3

OBJECTIVES:
- To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES 10

UNIT II ENGINEERING ETHICS 9

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION 9
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.
UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOMES:
• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org
OBJECTIVES:
- To understand the basics of Information Retrieval.
- To understand machine learning techniques for text classification and clustering.
- To understand various search engine system operations.
- To learn different techniques of recommender system.

UNIT I INTRODUCTION 9

UNIT II MODELING AND RETRIEVAL EVALUATION 9

UNIT III TEXT CLASSIFICATION AND CLUSTERING 9

UNIT IV WEB RETRIEVAL AND WEB CRAWLING 9

UNIT V RECOMMENDER SYSTEM 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Use an open source search engine framework and explore its capabilities
- Apply appropriate method of classification or clustering.
- Design and implement innovative features in a search engine.
- Design and implement a recommender system.

TEXT BOOKS:
REFERENCES:

CS8078 GREEN COMPUTING L T P C
3 0 0 3

OBJECTIVES:
- To learn the fundamentals of Green Computing.
- To analyze the Green computing Grid Framework.
- To understand the issues related with Green compliance.
- To study and develop various case studies.

UNIT I FUNDAMENTALS 9

UNIT II GREEN ASSETS AND MODELING 9

UNIT III GRID FRAMEWORK 9
Virtualization of IT systems – Role of electric utilities, Telecommuting, teleconferencing and teleporting – Materials recycling – Best ways for Green PC – Green Data center – Green Grid framework.

UNIT IV GREEN COMPLIANCE 9

UNIT V CASE STUDIES 9
The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to:
- Acquire knowledge to adopt green computing practices to minimize negative impacts on the environment.
- Enhance the skill in energy saving practices in their use of hardware.
- Evaluate technology tools that can reduce paper waste and carbon footprint by the stakeholders.
- Understand the ways to minimize equipment disposal requirements.
TEXT BOOKS:

REFERENCES:

CS8076 GPU ARCHITECTURE AND PROGRAMMING
L T P C
3 0 0 3

OBJECTIVES:
- To understand the basics of GPU architectures
- To write programs for massively parallel processors
- To understand the issues in mapping algorithms for GPUs
- To introduce different GPU programming models

UNIT I GPU ARCHITECTURE
Evolution of GPU architectures - Understanding Parallelism with GPU –Typical GPU Architecture - CUDA Hardware Overview - Threads, Blocks, Grids, Warps, Scheduling - Memory Handling with CUDA: Shared Memory, Global Memory, Constant Memory and Texture Memory.

UNIT II CUDA PROGRAMMING
Using CUDA - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applications: Problem Decomposition, Memory Considerations, Transfers, Thread Usage, Resource Contentions.

UNIT III PROGRAMMING ISSUES

UNIT IV OPENCL BASICS

UNIT V ALGORITHMS ON GPU
Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix - Matrix Multiplication - Programming Heterogeneous Cluster.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- Describe GPU Architecture
- Write programs using CUDA, identify issues and debug them
- Implement efficient algorithms in GPUs for common application kernels, such as matrix multiplication
- Write simple programs using OpenCL
- Identify efficient parallel programming patterns to solve problems
TEXT BOOKS:

REFERENCES:

CS8084 NATURAL LANGUAGE PROCESSING L T P C
 3 0 0 3

OBJECTIVES:
- To learn the fundamentals of natural language processing
- To understand the use of CFG and PCFG in NLP
- To understand the role of semantics of sentences and pragmatics
- To apply the NLP techniques to IR applications

UNIT I INTRODUCTION 9

UNIT II WORD LEVEL ANALYSIS 9

UNIT III SYNTACTIC ANALYSIS 9

UNIT IV SEMANTICS AND PRAGMATICS 10

UNIT V DISCOURSE ANALYSIS AND LEXICAL RESOURCES 8

TOTAL :45 PERIODS
OUTCOMES:
Upon completion of the course, the students will be able to:

- To tag a given text with basic Language features
- To design an innovative application using NLP components
- To implement a rule based system to tackle morphology/syntax of a language
- To design a tag set to be used for statistical processing for real-time applications
- To compare and contrast the use of different statistical approaches for different types of NLP applications.

TEXT BOOKS:

REFERENCES:
1. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.

CS8001 PARALLEL ALGORITHMS L T P C 3 0 0 3

OBJECTIVES:
To understand different parallel architectures and models of computation.
To introduce the various classes of parallel algorithms.
To study parallel algorithms for basic problems.

UNIT I INTRODUCTION 9

UNIT II PRAM ALGORITHMS 9

UNIT III SIMD ALGORITHMS -I 9
2D Mesh SIMD Model - Parallel Algorithms for Reduction - Prefix Computation - Selection - Odd-Even Merge Sorting - Matrix Multiplication
UNIT IV SIMD ALGORITHMS -II

UNIT V MIMD ALGORITHMS
UMA Multiprocessor Model - Parallel Summing on Multiprocessor- Matrix Multiplication on Multiprocessors and Multicomputer - Parallel Quick Sort - Mapping Data to Processors.

OUTCOMES:
Upon completion of this course, the students should be able to
• Develop parallel algorithms for standard problems and applications.
• Analyse efficiency of different parallel algorithms.

TEXT BOOKS:

REFERENCES:

IT8077 SPEECH PROCESSING L T P C
3 0 0 3

OBJECTIVES:
• To understand the fundamentals of the speech processing
• Explore the various speech models
• Gather knowledge about the phonetics and pronunciation processing
• Perform wavelet analysis of speech
• To understand the concepts of speech recognition

UNIT I INTRODUCTION
Introduction - knowledge in speech and language processing - ambiguity - models and algorithms - language - thought - understanding - regular expression and automata - words & transducers – N grams

UNIT II SPEECH MODELLING

UNIT III SPEECH PRONUNCIATION AND SIGNAL PROCESSING
Phonetics - speech sounds and phonetic transcription - articulatory phonetics - phonological categories and pronunciation variation - acoustic phonetics and signals - phonetic resources - articulatory and gestural phonology
UNIT IV SPEECH IDENTIFICATION 9
Speech synthesis - text normalization - phonetic analysis - prosodic analysis – diphone waveform
synthesis - unit selection waveform synthesis - evaluation

UNIT V SPEECH RECOGNITION 9
Automatic speech recognition - architecture - applying hidden markov model - feature extraction:
mfcc vectors - computing acoustic likelihoods - search and decoding - embedded training -
multipass decoding: n-best lists and lattices- a* (‘stack’) decoding - context-dependent acoustic
models: triphones - discriminative training - speech recognition by humans

TOTAL : 45 PERIODS

OUTCOMES:
On Successful completion of the course ,Students will be able to
• Create new algorithms with speech processing
• Derive new speech models
• Perform various language phonetic analysis
• Create a new speech identification system
• Generate a new speech recognition system

TEXT BOOK:
1. Daniel Jurafsky and James H. Martin, “Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition”, Person
education,2013.

REFERENCES

GE8073 FUNDAMENTALS OF NANOSCIENCE L T P C
 3 0 0 3

OBJECTIVES:
To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION 8
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and
Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-
ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties:
Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to
properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION 9
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling,
Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation,
Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.
UNIT III NANOMATERIALS

UNIT IV CHARACTERIZATION TECHNIQUES

UNIT V APPLICATIONS

OUTCOMES:
• Will familiarize about the science of nanomaterials
• Will demonstrate the preparation of nanomaterials
• Will develop knowledge in characteristic nanomaterial

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES: