Unit I

1. State any four types of patterns. (May 2006)
   Ans: The various types of patterns which are commonly used are as follows:
   1) Single piece or solid pattern
   2) Two piece or split pattern
   3) Loose piece pattern
   4) Cope and drag pattern
   5) Gated pattern

2. Mention any two advantages and disadvantages of die casting. (May 2006)
   Ans:
   **Advantages:**
   • It is a very fast process.
   • Moulds have longer life.
   • Better surface can be obtained.
   **Limitations:**
   • Moulds are much costlier.
   • This method is not suitable for small quantity production.
   • Shape and weight of the casting is limited.

3. Write the requirements of good pattern. (May 2007)
   Ans:
   • Simple in design
   • Cheap and readily available
   • Light in mass
   • Surface id smooth
   • Have high strength

4. What is core venting? (May 2007)
   Ans: While pouring the mould with molten metal mould walls and cores heat up rapidly and releases large amount of gases. In order to prevent casting defects these gases must be vented out. For this purpose core venting are used. Core venting are incorporated in the core box itself.

5. What function of core? (May 2008)
   Ans: Functions of core are:
   • Core provides a means of forming the main internal cavity for hollow casting.
   • Core provides external undercut feature.
• Cores can be inserted to obtain deep recesses in the casting.
• Cores can be used to increase the strength of the mould.

6 Which process is called lost waxing method? Why? (May 2008)
Ans: Investment casting process is also known as **Lost-wax** process. The term investment refers to a clock or special covering apparel. In investment casting, the clock is a refractory mould which surrounds the precoated wax pattern.

7 What is the function of core prints? (Dec. 2008)
Ans:

- Core prints are basically extra projections provided on the pattern.
- They form core seats in the mould when pattern is embedded in the sand for mould making.
- Core seats are provided to support all the types of cores.
- Though the core prints are the part of pattern, they do not appear on the cast part.

8 What are the advantages and applications of ceramic moulds? (Dec. 2008)
Ans:

**Advantages:**
- It is less expensive
- Intricate objects can be casted.
- Castings of thin sections and which do not require machining can be produced.

**Applications:**
- It is mainly used for all material using better ingredient in slurry.

9 What are the pattern materials? (Dec. 2008)
Ans:
1) Wood  2) Metal  3) Plastic
4) Plaster  5) Wax

10 Explain the term fettling. (Dec. 2009)
Ans: Fettling is the name given to cover all those operations which help the casting to give a good appearance. It includes the removal of cores, sand, gates, risers, runners and other unwanted projections from the casting.

**Unit II**

1 List out any four arc welding equipment. (May 2006)
Ans: The most commonly used equipments for arc welding are as follows:
(a) A.C or D.C. machine
(b) Wire brush
(c) Cables and connectors
(d) Ear thing clamps
(e) Chipping hammer

2 What are the special features of friction welding? (May 2007)
Ans:
Friction welding is a solid state welding process where coalescence is produced by the heat obtained from mechanically induced sliding motion between rubbing surfaces.

- The work parts are held together under pressure.
- Its operating is simple.
- Power required for the operation is low.
- It is used for joining steels, super alloys, non-ferrous metals and combinations of metals.

Ans: Resistance welding is a process where coalescence is produced by the heat obtained from resistance offered by the workpiece to the flow of electric current in a circuit of which the workpiece is a part and by the application of pressure.

4 What is the purpose of flux? (May 2008)
Ans: 1) It acts as shield to weld.
2) To prevent atmospheric reaction of molten metal with atmosphere.

5 How can slag inclusions in welding be avoided? (May 2008)
Ans:
- Avoid multi layer welding
- Reduce arc length
- Increase electrode angle
- Avoid using large electrode

6 How does brazing differ from braze welding? (Dec. 2008)
Ans:

<table>
<thead>
<tr>
<th>Brazing</th>
<th>Braze Welding</th>
</tr>
</thead>
<tbody>
<tr>
<td>The filler alloy is fed to one or more points in the assembly and it is drawn into the rest of the joint by capillary action.</td>
<td>The filler alloy is deposited directly at the point where it is desired.</td>
</tr>
</tbody>
</table>

7 Why is flux coated on filler rods? (Dec. 2008)
Ans:
- The coating improves penetration and surface finish.
- Suitable coating will improve metal deposition rates.

8 What is the application of carburizing flame? (Dec. 2009)
Ans:
- Carburizing flame is generally used for:
  o Welding of low alloy steel rods
  o Non-ferrous metals
9 What are the diameter and length of the electrodes available in the market? (Dec. 2009)
Ans:
- Standard length of electrodes are 250 mm, 300 mm and 450 mm.
- Standard diameters of electrodes are 1.6, 2, 2.5, 3.2, 4, 5, 6, 7, 8, and 9 mm.

Unit III

1 What are the four major drawbacks of hot working? (May 2006)
Ans:
- As hot working is carried out at high temperatures, a rapid oxidation or scale formation takes place on the metal surface which leads to poor surface finish and loss of metal.
- Due to the loss of carbon from the surface of the steel piece being worked, the surface layer loses its strength.
- This weakening of the surface layer may give rise to fatigue crack which results in failure of the part.
- Close tolerance cannot be obtained.
- Hot working involves excessive expenditure on account of high tooling cost.

2 Classify the types of extrusion. (May 2006)
Ans: Extrusion
   1. Hot Extrusion
   2. Cold Extrusion
   Hot Extrusion
   - Direct extrusion
   - Indirect extrusion
   - Tube extrusion

3 What is the difference between a bloom and a billet? (May 2007)
Ans: A bloom has a square cross section with minimum size of 150x150 mm and a billet is smaller than bloom and it may have any square section from 38 mm upto the size of a bloom.

4 What is impact extrusion? (May 2007)
Ans: The raw material is in slug form which have been turned from a bar or punched from a strip. By using punch and dies, the operation is performed. The slug is placed in the die and struck from top by the punch operating at high pressure and speed.

5 Why are a number of passes required to roll a steel bar? (May 2008)
Ans: To reduce the thickness and to increase the width of the bar number of passes are required.

6 How are seamless tubes produced? (May 2008)
Ans: Seamless tubing is a popular and economical raw stock for machining because it saves drilling and boring of parts. The piercing machine consists of two rapered rolls, called as piercing rolls.

7 What is Sejournet process? (Dec. 2008)
Ans: That extrusion process which is based both on the use of a lubricant in a viscous condition at extrusion temperature and on a separation between the lubrication of the chamber wall and die is called Sejournet process.

8 What is skew rolling? (Dec. 2008)
Ans: The rolls are powered and the workpiece is in due to frictional force between metal and surface. The torque on the rolls is being zero.

9 Explain the term Extrusion process. (Dec. 2009)
Ans: The extrusion process consists of compressing a metal inside a chamber to force it out through a small opening which is called as die. Any plastic material can be successfully extruded. A large number of extruded shapes which are commonly used are tubes, rods, structural shapes and lead covered cables. During the process, a heated cylindrical billet is placed in the container and forced out through a steel die with the help of a ram or plunger.

10 What are the disadvantages of forging processes? (Dec. 2009)
Ans:
- Complicated shapes cannot be produced.
- Generally used for large parts.
- Because of cost of dies, process is costly.

Unit IV

1 What is punching operation?
Ans: It is the cutting operation with the help of which various shaped holes are produced in the sheet metal. It is similar to blanking; only the main difference is that, the hole is the desired product and the material punched out to form a hole is considered as a waste.

2 What is super plastic forming operation?
Ans: Superplastic forming is a metalworking process for forming sheet metal. It works upon the theory of superplasticity, which means that a material can elongate beyond 100% of its original size.

3 What is press brake?
Ans: Press brake (bending brake) is an open frame press used for bending, cutting and forming. Generally, it handles long workpieces in the form of strips. Usually press brake have long dies and suitable and suitable for making long straight line bends.

4 Define hydro forming process.
Ans: Hydro forming is a process which can be carried out in two ways:
  1) Hydro - mechanical forming
2) Electro-hydraulic forming

Hydro-mechanical forming: In this method, the blank is placed over the punch whose shape is similar to inner of the find workpiece.

Electro-hydraulic forming: This method involves the conversion of electrical energy into mechanical energy in a liquid medium. Electric spark in a liquid produces shock waves and pressures which can be used for metal forming.

5 Give the difference between punching and blanking.

**Ans:**

Blanking: It is the cutting operation of a flat metal sheet. The article punched out is known as blank. Blank is the required product of the operation and the metal left behind is considered as a waste.

Punching: It is similar to blanking; only the main difference is that, the hole is the desired product and the material punched out to form a hole is considered as a waste.

6 How is hydro forming similar to rubber forming?

**Ans:** In both the sheet metal working processes sheet metal is pressed between a die and rubber block.

Under pressure, the rubber and sheet metal are driven into the die and confirm to its shape by forming the part.

7 What do you mean by minimum bend radius?

**Ans:** It is the radius of curvature on inside surface of the bend. If the bend radius is too small, then cracking of a material on the outer tensile surface takes place. To prevent any damage to punch and die, the bend radius should not be less than 0.8mm.

8 Define limiting drawing ratio.

**Ans:** It is the ratio of finished shell diameter (d) to the radius of bottom corner(r).

9 Define Embossing.

**Ans:** With the help of this operation, specific shapes or figures are produced on the sheet metal.

It is used for decorative purpose or giving details like names, trade marks, specifications, etc. On the sheet metal.

**Unit V**

1 What are the characteristic of thermoplastics? (May 2006)

**ANS:** Thermoplastics polymers soften when heated and harden, when cooled. These types of polymers are soft and ductile. They have low melting temperature and can be repeatedly moulded and remoulded to the required shapes.

2 List out the material for processing of plastics?

**ANS:** The following mentioned are the various polymer additives used in practice:

1) Filler material
2) Plasticizers
3) Stabilizers
4) Colorants
5) Flame retardants
6) Reinforcements
7) Lubricants.
3 List the advantage of cold forming of plastics? (MAY 2007) 
ANS: 
ADVANTAGES:  
• Cold forming can be carried out at room temperature  
• It is used to produce filament and fibres  
• It is a simple process.

4 What is film blowing? (May 2007)  
Ans: In this process a heated doughy paste of plastic compound is passed through a series of hot rollers, where it is squeezed into the form of thin sheet of uniform thickness. It is used for making plastic sheets and films.

5 What are the types of plastics? (May 2008)  
Ans: Polymers are classified in two major categories:  
   o Thermoplastic polymers (Soften when heated and harden when cooled)  
   o Thermosetting polymers (Soften when heated and permanently hardened when cooled).

6 What is compression moulding? (May 2008)  
Ans: The main objective is to melt the material due to compression.

7 Name the parts made by rotational moulding. (Dec. 2008)  
Ans: Rotational moulding process is mostly used for the production of toys in P.V.C like horse, boats, etc. Larger containers up to 20 m³ capacity, fuel tanks of automobile are made from polythene and nylon. This process is also used for production of large drums, boat hulls, buckets, housings and carrying cases.

8 What is parison? (Dec. 2008)  
Ans: Blow moulding consists of extrusion of the heated tubular plastic piece called as parison which is transferred to the two piece mold.

9 Define degree of polymerization. (Dec. 2009)  
Ans: It is the number of repetitive units present in one molecule of a polymer.  
Degree of polymerisation = \[ \frac{\text{Molecular weight of a polymer}}{\text{Molecular weight of a single monomer}} \]

10 What is rotational moulding of plastics? (Dec. 2009)  
Ans:  
• Rotational moulding also called as roto-moulding.  
• A measured amount of polymer power is placed in a thin walled metal mould and the mould is closed.  
• Then the mould is rotated about two mutually perpendicular axes as it is heated.
Other Questions and Answers

Unit I

1 Name the steps involved in making a casting.
Ans: Steps involved in making a casting are
(1) Pattern making   (2) Sand mixing and preparation
(3) Core making     (4) Melting
(5) Pouring        (6) Finishing
(7) Testing        (8) Heat treatment
(9) Re-testing

2 What are the applications of casting?
Ans: Transportation vehicles (in automobile engine and tractors)
• Machine tool structures
• Turbine vanes and power generators
• Mill housing
• Pump filter and valve

3 Define pattern.
Ans: A pattern is defined as a model or replica of the object to be cast. A pattern exactly resembles the casting to be made except for the various allowances.

4 Define mould making.
Ans: It is a model or form around which sand is packed to give rise to a cavity called as mould cavity, in which molten metal is poured and the casting is produced.

5 Why is a pattern larger than casting?
Ans: A pattern is slightly larger than the casting because a pattern carries allowance compensate for metal shrinkage.

6 What do you mean by coreprints in pattern?
Ans: To produce seats for the cores in the mould in which cores can be placed, for producing cavity in the casting. Such seats in the mould are called as coreprints.

7 Name the functions of pattern.
Ans:
(1) Prepare a mould cavity
(2) To produce seats for the cores
(3) To establish the parting line
(4) To minimize casting defects.

8 Name the materials for making patterns
Ans: The common materials of which the patterns are made are as follows:
(1) Wood         (2) Metal      (3) Plastic
(4) Plaster      (5) Wax
9 List the various alloys and metal used in pattern.
Ans: The various metals and alloys employed for making patterns are:
(a) Aluminium and its alloys   (b) Steel
(c) Brass     (d) Cast iron
(e) White metal

10 Explain wax moulding.
Ans: After being moulded, the wax pattern is not taken out; rather the mould is inverted and heated and the molten wax comes out or gets evaporated, hence there is no chance of the mould cavity getting damaged while removing the pattern.

11 List the allowances of pattern.
Ans: The following allowances are provided on the pattern:
(a) Shrinkage or contraction allowance
(b) Machining allowance
(c) Draft or taper allowance
(d) Distortion allowance
(e) Rapping or shake allowance

12 List the three forms of contraction.
Ans: Contraction takes place in three forms
(1) Liquid contraction
(2) Solidifying contraction
(3) Solid contraction

13 Shrinkage of metal depends on what factors?
Ans: The shrinkage of metal depends on the following factors:
(1) The metal to be cast
(2) Pouring temperature of the molten metal
(3) Dimensions of the casting
(4) Method of moulding

14 What do you mean by finish allowance?
Ans: Machining allowance or finish allowance is the amount of dimension on a casting which is made oversized to provide stock for machining.

15 What are the factors on which amount of machining depends?
Ans: Factors affecting machining are
(1) Metal of casting
(2) Machining method used
(3) Casting method used
(4) Shape and size of the casting
(5) Amount of finish required on the machined portion

16 Why is a taper allowance used?
Ans: Draft allowance or taper allowance is given to all vertical faces of a pattern for their easy removal from sand without damaging the mould.

17 When does warpage occur?
Ans: Warpage occurs when
(1) It is of irregular shape.
(2) It is of U or V-shape
(3) The arms having unequal thickness.
(4) One portion of the casting cools at a faster rate than the other.

18 How do you eliminate warpage?
Ans: To eliminate this defect, an opposite distortion is provided on the pattern, so that the effect is balanced and correct shape of the casting is produced.

19 Enlist the factors affecting selection of types of pattern.
Ans: The type of pattern to be used for a particular casting will depend on following factors:
(1) Quantity of casting to be produced
(2) Size and shape of the casting
(3) Type of moulding method
(4) Design of casting

20 Name any four types of pattern.
Ans: The various types of patterns which are commonly used are as follows:
(1) Single piece or solid pattern
(2) Two piece or split pattern
(3) Loose piece pattern
(4) Cope and drag pattern

21 Write the significance of loose moulding.
Ans: Some patterns embedded in the moulding sand cannot be withdrawn, hence such patterns are made with one or more loose pieces for their easy removal from the moulding box.

22 Name and give use of the pattern in which number of casting are made at a time
Ans: Gated pattern
by using gated patterns number of casting can be made at a time, hence they are used in mass production system.

23 Piston rings are made by .......pattern
Ans: Match plate pattern
These patterns are made in two pieces i.e. one piece mounted on one side and the other on the other side of the plate, called as match plate.

24 What is the difference between sweep and segmental pattern?
Ans: The main difference between them is that, a sweep is given a continuous revolving motion to generate the required shape, whereas a segmental pattern is a portion of the solid pattern itself and the mould is prepared in parts by it.

25 Why are patterns coloured?
Ans: Patterns are provided with certain colours and shade for following reasons:
(i) To identify quickly the main pattern body and different pattern parts.
(ii) To indicate the type of the metal to be cast.
(iii) To identify loose pieces, core prints, etc.
(iv) To visualise machined surfaces, etc.

26 Selection of mould materials depends on.....
Ans: selection depends on following factors
(i) cost of the material
(ii) Quality of casting required
(iii) Number of casting required
(iv) Shape and size of the casting
(v) Material to be cast, etc.

27 What are the types of moulding sand?
Ans: All types of sands used in the foundry can be grouped as:
1. Natural sand  2. Synthetic sand  3. Special sands

28 Why is synthetic sand better than natural sand?
Ans:
(1) It requires less proportion of binder.
(2) Higher refractoriness and permeability.
(3) Properties can be easily controlled.
(4) Refractory grain size is more uniform.

29 Name the different types of special sand.
Ans: Types of special sand are
(1) Green sand  (2) Loam sand  (3) Core sand
(4) Parting sand  (5) Facing sand  (6) Backing sand

30 Define black sand
Ans: It is the sand which backs up the facing sand and does not come in direct contact with the pattern. This sand has black colour and hence, sometimes called as black sand.

31 Define green strength.
Ans: A mould which has adequate green strength will retain its shape and does not distort or collapse, even after the pattern has been removed from the moulding box.

32 Define permeability.
Ans: The sand must be porous to allow the gases and steam generated within the moulds to be removed freely. This property of sand is known as permeability or porosity.

33 Name the constituents of moulding sand.
Ans: The main constituents of moulding sand are:
(1) Sand  (2) Binder
(3) Additives  (4) Water

34 Classify binders and name the types in it
Ans:
1) Organic binders
   (a) Linseed oil  (c) Dextrin
   (b) Molasses  (d) Pitch
2) Inorganic binders
   (a) Clay,  (b) Sodium silicate
   (c) Portland cement

35 Name the types of clay binders
Clay binder which is most widely used have following types:
(a) Bentonite  (b) Fire clay  (c) Limonite
(d) Ball clay  (e) Kaolonite

Additives are used so as to
Ans:  1) To enhance the existing properties.
     2) To develop certain other properties like resistance to sand expansion defects, etc.

What do you mean by coal dust?
Ans: It reacts chemically with the oxygen present in the sand pores and thus, produces a reducing atmosphere at the mould metal interface and prevents oxidation of the metal.

Functions of sand preparation are
Ans:  (1) To develop optimum properties in the moulding sand.
     (2) To obtain even distribution of sand grains throughout the bond.
     (3) To add suitable amount of water to activate clay binder.
     (4) To deliver sand at the suitable temperature.

Define Muller.
Ans: It is a mechanical mixer used for mixing sand ingredients in dry state.

Name various methods of sand testing.
Ans:
   (1) Moisture content test   (2) Clay content test
   (3) Permeability test      (4) Grain fineness test

Name the factors affecting permeability test
Ans: permeability depends on the following factors:
   - Grain shape and size
   - Grain distribution
   - Binder and its contents
   - Water amount in the moulding sand
   - Degree of ramming

Enlist the functions of core.
   - Core provides a means of forming the main internal cavity for hollow casting.
   - Core provides external undercut feature.
   - Cores can be inserted to obtain deep recesses in the casting.
   - Cores can be used to increase the strength of the mould.

Define Core.
Ans: Core is a sand shape or form which makes the contour of a casting for which no provision has been made in the pattern for moulding.

Difference between core sand and mould sand.
Ans: The main difference is that core sand has very low clay content and larger grain size.
45 Core sand mixture consists of...
Ans: Core sand mixture consists of sand, 1% core oil, 1% cereal and 2.5 to 6% of water.

46 Name the core sand ingredients.
Ans: Ingredients are
(1) Granular refractories (2) Core binders
(3) Water (4) Additives

47 What does core making consists of?
Ans: Core making basically consists of following steps:
(1) Core sand preparation (2) Core making
(3) Core baking (4) Core finishing or dressing
(5) Setting the cores

48 Define core driers.
Ans: The special shapes, which support the green sand cores having curved surfaces, are known as core driers.

49 List various types of core.
Ans: Their main types are as follows
(1) Horizontal core (2) Vertical core (3) Hanging core
(4) Balanced core (5) Ram up core (6) Kiss core
(7) Drop core

50 What is core box?
Ans: Core box is a pattern for making cores. They are employed for ramming cores in them. Core boxes provide the required shape to the core sand.

51 Name the types of core boxes.
Ans:
(1) Half core box (2) Dump core box
(3) Split core box (4) Strickle core box
(5) Gang core box (6) Loose piece core box
(7) Left and right hand core boxes

52 Why do we use a core prints?
Ans: Core prints are basically extra projections provided on the pattern. They form core seats in the mould when pattern is embedded in the sand for mould making. Core seats are provided to support all the types of cores.

53 Name the types of core prints.
Ans: Core prints are of the following types:
(i) Horizontal core print (ii) Vertical core print
(iii) Balanced core print (iv) Cover core print

54 Define mould.
Ans: When the pattern is removed, a cavity corresponding to the shape of the pattern remains in the sand which is known as mould or mould cavity.

55  What is loam moulding ?
Ans: In this, a rough structure of component is made by hand using bricks and loam sand. The sand used is known as loam sand or loam mortar.

56  Explain in short shell moulding.
- Shell moulding is suitable for thin walled articles.
- It consists of making a mould that has two or more thin shell like parts consisting of thermosetting resin bonded sand.

57  Name any six hand mould tools
Ans: A number of hand tools are
(1) Shovel  (2)  Hand riddle   (3)  Rammers
(4) Lifters or cleaners (5)  Draw spike (6)  Bellow

58  Functions of moulding machine.
Ans: The main functions of moulding machines are:
- Ramming of moulding sand.
- Rolling over or inverting the mould through 180°
- Rapping of pattern.
- Removing the pattern from the mould.

59  Name the types of moulding machine.
Ans: Following are the types of moulding machines:
(a) Squeeze moulding machines (b)  Jolt moulding machines
(c) Jolt-squeezing machines (d) Sand slinger

60  Difference between permanent mould casting and sand casting.
Ans: The main difference between permanent mould casting and sand casting is that, in this the mould is permanent which is neither destroyed nor remade after each cast.

61  Name the type of die casting machine.
Ans: The main types of die-casting machines are:
(a) Hot chamber die-casting
(b) Cold chamber die-casting

62  Classify centrifugal casting.
Ans: Centrifugal casting processes can be classified as:
(a) True centrifugal casting  (b) Semi-centrifugal casting
(c) Centrifuging

63  What do you mean by shaking out operation ?
Ans: After solidification of casting, the mould are broken to obtain the final casting. This operation is known as shake out operation, which may be performed manually or mechanically.

64  Operations performed after shaking are........
Ans: The various operations which are performed after shake out are as follows:
(a) Removal of dry sand cores.
(b) Removal of gates, risers, runners, etc.
(c) Removal of unwanted metal projections, fins, etc.
(d) Removal of adhering sand and oxide, scale from the casting surface.

65 Define snagging.
Ans: The operation of removal of unwanted metal projections and fins is called as **snagging**.

66 Name defects occurring in casting.
Ans:
1. Blow holes
2. Porosity
3. Shrinkage
4. Inclusions
5. Hot tears or hot cracks
6. Misrun and cold shuts

67 Name the inspection methods of casting.
Ans:
1. Pressure test
2. Magnetic particle test
3. Dye penetrant test
4. Radiographic inspection
5. Ultrasonic inspection
6. Visual inspection

68 What is the difference between magnetic and dye penetrant testing?
Ans: Magnetic testing is used for magnetic materials and dyes are used for non-magnetic materials.

**Unit II**

1 Define weldability.
Ans: Weldability is defined as the capacity of a material to be welded under fabrication conditions imposed in a specific and suitably designed structure and to perform satisfactorily in the intended service.

2 State requirement of a good weldability.
Ans: A metallic material with adequate weldability should fulfil the following requirements:
   - Have full strength and toughness after welding.
   - Contribute to good weld quality even with high dilution.
   - Have unchanged corrosion resistance after welding.
   - Should not embrittle after stress relieving.

3 How is welding classified?
Ans: Welding is classified as
   - Gas welding
   - Arc welding
   - Resistance welding
   - Solid state welding
4. Name the applications of welding.
Ans: Applications of welding are
- Aircraft construction
- Buildings
- Rail road equipment
- Ships
- Automobile construction
- Pressure vessels and tanks
- Pipings and pipelines

5. Write in short about gas welding.
Ans: Gas welding is a fusion-welding or non-pressure welding method. It joins the metals, by using combustion heat of oxygen/air and fuel gas (acetylene, hydrogen, propane or butane) mixture.

6. Name the types of gas welding.
Ans: Following are the types of gas welding.
(a) Oxy-acetylene welding
(b) Air-acetylene welding
(c) Oxy-hydrogen welding
(d) Pressure gas welding

7. Explain the principle of oxy-acetylene welding.
Ans: When acetylene, in correct proportion, is mixed with oxygen in a welding torch and ignited, then the flame resulting at the tip of the torch is sufficiently hot to melt and join the parent metals.

8. Name the types of flames.
Ans: The generated flames are classified into following three types
(a) Neutral flame (Acetylene and oxygen in equal proportion)
(b) Oxidising flame (Excess of oxygen)
(c) Reducing flame or carburising flame (Excess of acetylene)

9. Explain neutral flame.
Ans: The flame has a nicely defined inner cone which is light blue in colour and surrounded by an outer flame envelope.

10. What are the metals welded using neutral flame?
Ans: A neutral flame is mostly used for the welding of:
- Mild steel
- Aluminium
- Copper
- Cast iron
- Stainless steel

11. How do we obtain oxidising flame using neutral flame?
Ans: If, after the neutral flame has been established, the oxygen supply is further increased then oxidising flame will be developed.

12. How does the flame of an oxidising flame look?
Ans: It is recognised by the small white cone which is shorter, much bluer in colour and more pointed than neutral flame.
13 Where is oxidising flame used?
Ans: An oxidising flame is used for:
  o Copper-base metals
  o Zinc-base metals
  o Ferrous metals such as manganese steel, cast iron, etc.

14 Define carburising flame.
Ans: If the amount of oxygen supplied to the neutral flame is reduced, then the generated flame will be a carburising flame or reducing flame i.e more content of acetylene.

15 Name the metals welded by carburising flame.
Ans: This flame is generally used for:
  o Welding of low alloy steel rods
  o Non-ferrous metals
  o High carbon steel

16 Write down the methods of welding.
Ans: There are three typical methods that may be used which are as follows:
(a) Leftward or fore-hand welding method
(b) Rightward or back-hand welding method
(c) Vertical welding method

17 What do you mean by filler metal?
Ans: Filler metal is the material which is added to the weld pool to assist in filling the gap.

18 Explain the function of flux in welding.
Ans: While welding, if the metal is heated in air then the oxygen from air combines with the metal to form oxides. This results in poor quality, low weld strength hence, to avoid this difficulty a flux is employed during welding. It prevents the oxidation of molten metal.

19 What is the disadvantages of flux.
Ans: Fluxes used in welding produces fumes that are irritating to the eyes, nose, throat and lungs.

20 Give the applications of gas welding.
Ans: Gas welding is most widely used for the following purposes:
  • Joining thin materials.
  • Joining most ferrous and non-ferrous metals.
  • In automobile and aircraft industries.
  • In sheet metal fabricating plant.

21 What is arc welding?
Ans: Electric arc welding is a fusion welding process in which welding heat is obtained from an electric arc between an electrode and the workpiece.

22 Define arc length and arc crater.
Ans: The distance between the centre of arc of the electrode tip and the bottom of arc crater is called as arc length. A small depression is formed in the base of the metal which is called as arc crater.
23. Name the equipments of gas welding
   Ans: The most commonly used equipments for arc welding are as follows:
   (a) A.C or D.C machine
   (b) Wire brush
   (c) Cables and connector
   (d) Earthing clamps
   (e) Chipping hammer
   (f) Wire brush
   (g) Helmet
   (h) Safety goggles
   (i) Cable lug
   (j) Hand gloves, apron, etc.

24. What are the functions of a coating on electrode?
   Ans:
   (1) The coating improves penetration and surface finish.
   (2) Suitable coating will improve metal deposition rates.
   (3) It limits spatter, produces a quite arc and easily removes slag.
   (4) Core wire melts faster than the covering, thus forming a sleeve of the coating which constricts and produces an arc with high concentrated heat.
   (5) Coating saves the welder from the radiations.

25. Name the types of arc welding.
   Ans: The main types of arc welding are as follows:
   (a) Carbon arc welding
   (b) Shielded metal arc welding
   (c) Submerged arc welding
   (d) Gas tungsten arc welding
   (e) Gas metal arc welding
   (f) Electro slag welding
   (g) Plasma arc welding
   (h) Flux cored arc welding
   (i) Stud arc welding

26. Define SMAW.
   Ans: It is an arc welding process where coalescence is produced by heating the workpiece with an electric arc set up between the flux coated electrode and the workpiece.

27. What is submerged arc welding?
   Ans: It is an arc welding process where coalescence is produced by heating, with an electric arc set up between bare metal electrode and workpiece.

28. Explain in short plasma arc welding.
   Ans: It is an arc welding process where coalescence is produced by the heat obtained from a constricted arc set up between a tungsten electrode and the water cooled nozzle or the workpiece. The process employs two inert gases i.e. one forms the plasma arc and the second shields the plasma arc.
   Filler rod may or may not be added and pressure is not required for welding.

29. Write about special feature of flux cored welding.
   Ans: The electrode is flux cored i.e. flux is contained within the hollow electrode. The flux cored electrode is coiled and supplied to the arc as a continuous wire. The flux inside the wire provides the necessary shielding of the weld pool.

30. Give the applications of flux cored welding
   Ans: Applications of flux core welding are
   (1) Bulldozer blades, main frames
   (2) Rotating frames for cranes
31 Explain resistance welding and its filler metal.
Ans: Resistance welding is a process where coalescence is produced by the heat obtained from resistance offered by the workpiece to the flow of electric current in a circuit of which the workpiece is a part and by the application of pressure. Filler metal (rod) is not required during the process.

32 What are the factors affecting resistance welding?
Ans: Four factors are involved in operation of resistance welding:
- Amount of current passing through the workpiece.
- The pressure that electrodes transfer to the workpiece.
- Time during which current flows.
- Area of electrode tip in contact with the workpiece.

33 Write the applications of resistance welding
Ans: This process is used for:
- Joining of sheets, bars, rods and tubes.
- Making of tubes and furniture.
- Welding of aircraft and automobile parts.
- Making of cutting tools, fuel tanks of cars, tractors, etc.

34 Name the types of resistance welding
Ans: Resistance welding process includes following methods:
(a) Spot welding  (b) Seam welding
(c) Projection welding (d) Percussion welding
(e) Flash butt welding  (f) Resistance butt welding
(g) High frequency resistance welding

35 What is adhesive bonding?
Ans: Adhesive bonding is the process of joining materials by using adhesives. The term adhesive includes substances such as glues, cements and other bonding agents.

36 Write the main steps of adhesive bonding
Ans: Main steps in adhesive bonding are
(1) Surface Preparation  (2) Applying the primer
(3) Applying the adhesive (4) Assembling adhesive coated components
(5) Curing the assembly (6) Testing of the joints

37 Give various mediums of applying adhesives.
Ans: Medium of applying the adhesive on the surfaces to be joined are as follows:
- Liquid
- Tape
- Film
- Solution
- Powder
- Paste

38 Name types of adhesives.
Ans: The most commonly used adhesives are as follows:
(a) Thermoplastic adhesives
(b) Thermoseatting adhesives

39 Explain thermoplastic adhesives.
Thermoplastic type adhesives soften at high temperature. They are easy to use and are employed as, air drying dispersions, emulsions or solutions that achieve their strength through the evaporation of the solvent.

40 Explain thermosetting adhesives.
Ans: Thermosetting adhesives, once hardened cannot be remelted and a broken joint cannot be rebounded by heating also. These types of adhesives cure or harden by chemical reactions like polymerisation, condensation, vulcanisation or oxidation caused by the addition of a catalyst; heat, pressure, radiations, etc.

41 Name any four synthetic adhesives and their applications.
Ans:

<table>
<thead>
<tr>
<th>Adhesive</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic</td>
<td>Structural bonding, plywood</td>
</tr>
<tr>
<td>Acrylic</td>
<td>Bonding of plastics, glass</td>
</tr>
<tr>
<td>Epoxy</td>
<td>Structural bonding, concrete repair, construction industries</td>
</tr>
<tr>
<td>Olefin polymers</td>
<td>Laminating, packaging, book-binding</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>Bonding of flexible to non-flexible substrate</td>
</tr>
<tr>
<td>Urea</td>
<td>Plywood, furniture</td>
</tr>
</tbody>
</table>

42 Give the applications of adhesive bonding.
Ans: Adhesive bonding are used in following industries:
(a) Automotive  (b) Aircraft  (c) Packaging
(d) Furniture   (e) Ship-building (f) Book-binding
(g) Shoe and apparel  (h) Medical and dental (i) Electrical
(j) Railroad  (k) Tape, etc.

43 Define soldering and classify it.
Ans: It is defined as a group of joining processes where coalescence is produced by heating to a suitable temperature and by using a filler metal having a liquidus not exceeding 427°C and below the solids of base metals.
Soldering is classified as Soft solder, Hard solder.

44 Define soft and hard soldering.
Ans: **Soft soldering** is used in sheet metal work for joining parts that are not exposed to the high temperature action and not subjected to excessive loads and forces.
**Hard soldering** used solders which melt at higher temperatures and are stronger than those used in soft soldering.

45 What is brazing?
Ans: It is defined as a group of joining processes where coalescence is produced by heating to a suitable temperature and by using a filler metal having a liquidus above 470°C and below the solids of the base metal.

46 Name the methods of brazing.
Ans: There are various brazing methods such as:
- Torch brazing
- Resistance brazing
- Immersion brazing
- Furnace brazing

47 What do you mean by bronze welding?
Ans: Bronze welding does not mean the welding of bronze, but it is a welding using bronze filler rod.

48 Name different defects in weld.
Ans: Some common weld defects are listed below:
(a) Cracks 
(b) Distortion 
(c) Inclusions 
(d) Porosity and blow holes 
(e) Undercutting 
(f) Overlapping 
(g) Spatter 
(h) Poor fusion 
(i) Poor weld bead appearance 
(j) Incomplete penetration

Unit III

1 What is mechanical working?
Ans: Mechanical working of a metal is a simply plastic deformation performed to change the dimensions, properties and surface conditions with the help of mechanical pressure.

2 Define cold and hot working in short.
Ans: Mechanical working of metals above the recrystallisation temperature, but below the melting or burning point is known as hot working whereas; below the recrystallisation temperature is known as cold working.

3: Give the principal hot working process.
Ans: The Principal hot working process applied to various metals are as follows:
1. Hot rolling 
2. Hot extrusion 
3. Hot spinning 
4. Roll piercing 
5. Hot drawing 
6. Hot forging

4: What is the purpose of rolling?
Ans: The main purpose of rolling is to convert larger sections such as ingots into smaller sections, which can be used directly in as rolled state or stock for working through other process.

5: Name the commonly used rolled sections.
Ans: Commonly rolled sections are flat, tee, angle, channel, round, I-section.

6: What are the types of rolling mills?
Ans: According to the number and arrangement of the rolls, rolling mills are classified as follows:
1. Two-high rolling mill 
2. Three-high rolling mill 
3. Four-high rolling mill 
4. Tandem rolling mill 
5. Cluster rolling mill 
6. Planetary rolling mill

7: Explain cluster rolling mill.
Ans: It is a special type of fourhigh rolling mill. In this, each of the two working rolls is backed up by two or more of the larger back up rolls.

8: What is tandem rolling mill?
Ans: It is a set of two or three stands of rolls set in parallel alignment. This facilitates a continuous pass through each one successively without change of direction of the metal or pause in the rolling process.

9 What is the main function of planetary rolling mill?
Ans: The main feature of this mill is that, it reduces a hot slab to a coiled strip in a single pass.

10 Which mill is attached to end of planetary mill and what is it's function?
Ans: On the exit side planishing mill is installed to improve the surface finish.

11 Define extrusion.
Ans: The extrusion process consists of compressing a metal inside a chamber to force it out through a small opening which is called as die.

12 Name the method of extrusion.
Ans: The different methods of extrusion are hot extrusion and cold extrusion.

13 What are the factors affecting choice of extrusion?
Ans: The factors which govern the choice are:
   a) Metal to be extruded  
   b) Thickness of the extrusion section
   c) Raw material size  
   d) Capacity of the press
   e) Product typ, etc.

14 How is hot extrusion sub-divided?
Ans: Hot extrusion process is subdivided as follows:
   (a) Direct or forward extrusion  
   (b) Indirect or backward extrusion
   (c) Tube extrusion

15 What is discard?
Ans: Generally, last 10% length of billet is unextrud which is known as discard (waste) and it contains the surface impurities of the billet.

16 Give the other name of indirect ans direct extrusion.
Ans: Direct extrusion is also called as forward extrusion. Indirect extrusion ia also called as backward extrusion.

17 Which extrusion requires less force and define it.
Ans: As compared to direct extrusion, less total force is required in indirect extrusion. In this type, the ram or plunger used is hollow and as it presses the billet against the backwall of the closed chamber, the metal is extruded back into the plunger.

18 What is forging?
Ans: Forging is the process of shaping heated metal by the application of sudden blows (hammer forging) or steady pressure (press forging) and makes use of the characteristic of plasticity of the material.

19 How is forging classified?
Ans: According to the equipments utilised for forging, they are classified as follows:
1. Smith die (Open die) forging:
   (a) Hand forging    (b) Power forging
2. Impression die (Closed die) forging:
   (a) Drop forging    (b) Press forging
   (c) Maching or upset forging   (d) Roll forging

20 Define smithing.
Ans: Smithing is the act or art of working on forging metals, as iron, into any required shape.

21 Give the classification of hammers.
Ans:

```
<table>
<thead>
<tr>
<th>Hammers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hand or Smith's hammer</td>
</tr>
<tr>
<td>Sledge hammer</td>
</tr>
<tr>
<td>Power hammer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1. Ball peen hammer</td>
</tr>
<tr>
<td>2. Cross peen hammer</td>
</tr>
<tr>
<td>3. Straight peen hammer</td>
</tr>
<tr>
<td>1. Straight peen sledge hammer</td>
</tr>
<tr>
<td>2. Cross peen sledge hammer</td>
</tr>
<tr>
<td>3. Double ended or double faced sledge hammer</td>
</tr>
<tr>
<td>1. Spring hammer</td>
</tr>
<tr>
<td>2. Pneumatic hammer</td>
</tr>
<tr>
<td>3. Steam hammer</td>
</tr>
<tr>
<td>4. Drop hammer</td>
</tr>
</tbody>
</table>
```

22 Classify smith's hammer.
Ans: Smith's hand hammers are small in size and of following types:
1. Ball peen hammer
2. Cross peen hammer
3. Straight peen hammer

23 Define ball peen hammer.
Ans: It is most suitable hammer for hand forging operations. It has a tough cast steel or forged steel head which is fitted to a wooden handle. Once end of the head is flat called as face i.e. hardened and polished. It is used for general striking and hammering purpose. Another end is half ball shaped called as peen i.e. used for riveting or burring-over purpose.

24 Define cross peen hammer.
Ans: **Cross Peen Hatmer:** In this type of hammer, peen is at right angle to the axis of the handle of the hammer. It is used for heading, stretching and hammering into the inner portions of the component.

25 Define straight peen hammer.
Ans: In this type of hammer, peen is parallel to the axis of handle of the hammer. It is used for stretching the metal.

26 How are sledge hammers classified?
Ans: Sledge hammers are larger in size as compared to hand hammers and of following types:
1. Straight peen hammer
2. Cross peen hammer
3. Double ended or double faced hammer

27 The striking surface of the sledge hammer is .......... Why?
Ans: To avoid the damage of workpiece surface, the striking surface of the sledge hammer is made slightly convex and smooth.

28 When is a hammer called double ended?
Ans: If the hammer has no peen formation and instead carries flat faces at both ends, then it is called as double ended or double faced hammer.

29 What are power hammers?
Ans: Machines which work on the principle of repeated blows are called as forging hammers or power hammers.

30 Classify power hammers.
Ans: Forging or power hammers are of following types:
1. Spring hammer
2. Pneumatic hammer
3. Steam or air hammer
4. Drop hammer.

31 Why is hand lever used?
Ans: To adjust the stroke of the connecting rod and intensity of blows, hand lever is used.

32 What are the types of drop hammer used to make drop forging?
Ans: Three types of drop hammers are used in making drop forgings:
- Board or gravity hammer
- Air-lift hammer
- Power drop hammer or steam hammer

33 Differentiate between hydraulic and mechanical press (Two points only)
Ans:
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Hydraulic Press</th>
<th>Mechanical Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydraulic presses are used for heavy work.</td>
<td>Machanical presses are used for light work.</td>
</tr>
<tr>
<td></td>
<td>Operating speed of hydraulic presses is slow.</td>
<td>Machanical presses operate faster than hydraulic presses.</td>
</tr>
</tbody>
</table>
34 Explain machine forging.
Ans: Machine forging is also called as hot heading. It consists of applying pressure longitudinally on a hot bar, which is gripped firmly between grooved dies, to upset a required portion of its length.

35 Differentiate between press and drop forging.
Ans:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Press forging</th>
<th>Hammer/Drop forging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Press forging is slower as compared to hammer forging, but the reduction in the size of heavy parts is comparatively rapid.</td>
<td>Hammer forging is fast process, but a large number of blows are applied in rapid succession for reduction in the size of heavy parts.</td>
</tr>
<tr>
<td>2.</td>
<td>In press forging there is no restriction of the component.</td>
<td>In hammer forging there is a restriction of the component size.</td>
</tr>
</tbody>
</table>

36 What is heading tool?
Ans: The dies are so designed that, the complete operation is performed in several stages and the final shape is attained gradually. The operation is performed by using die and punch which is called as heading tool.

37 What is roll forging?
Ans: Roll forging process consists of placing raw stock between two roll dies which are of semi-cylindrical form and are grooved to impart a desired shape to the workpiece being forged.

38 Name the typical forging operations.
Ans: A typical smith forging operations are as follows:

39 What is upsetting?
Ans: It is a process through which the cross-section of a metal piece is increased with a corresponding increase in its length.

40 Name the opposite process to upsetting process (Define it).
Ans: Drawing out is exactly a reverse process to that of upsetting. It is employed when a reduction in thickness, width of a bar is desired with a corresponding increase in its length.

41 Define cutting.
Ans: Cutting-off is a form of a chiseling whereby a long piece of stock is cut into several specified lengths, or a forging is cut-off from its stock.

42 What is drifting?
Ans: In drifting, a tool known as drift, is made to pass through the punched hole to produce a finished hole of the required size.

43 What is setting down?
Ans: Setting down is the operation through which the rounding of a corner is removed, to make it square by using a set hammer.

44 Explain fullering.
Ans: Fullering is also called as spreading. Fullering the metal along the length of the workpiece is done by working separate sections. In this, the axis of the workpiece is positioned perpendicular to the width of the flat die.

45 When is sound weld produced?
Ans: For production of sound weld, the surfaces in contact must be perfectly clean, both mechanically and chemically so that cohesion will take place when the metal is in a plastic state.

46 What is scarfing?
Ans: The method of preparing the metal pieces for welding called as scarfing.

47 Name the type of weld joints.
Ans: Following are the forms of welded joint which are commonly used:
   a) Lap scarf weld
   b) Butt weld
   c) T or Jump weld
   d) V-weld or splice

48 Explain any 2 types of weld joints.
Ans: 
   a) Lap scarf weld: In this, the ends are prepared so that they may be welded one upon the other with the joint in an inclined position.
   b) Butt weld: In this, the ends of the pieces to be joined are butted together, the weld being between the ends at right angles to the length of the piece.

49 Name any 4 defects of forging.
Ans: The defects commonly observed in forged components are as follows:
   1. Defective metal structure
   2. Presence of cold shuts or cracks at corners or surfaces:
   3. Incomplete components:
   4. Mismatched forging

50 Give 2 ways of removing forging defects.
Ans: Forging defects can be removed as follows:
   • Shallow cracks and cavities can be removed by chipping out of the cold forging with pneumatic chisel.
   • Surface cracks are removed from forging by grinding on special machines. Care should be taken to see that the component is not under-heated, overheated or burnt.

51 Name the process of seamless tubes and Why is it used?
Ans: Roll piercing is a method of producing seamless tubing is a popular and economical raw stock for machining because it saves drilling and boring of parts.

52 Define cold working.
Ans: The working of metals at temperatures below their recrystallisation temperature is called as cold working.

53 Give the methods of cold working.
Ans: The principal methods of cold working are as follows:
1. Cold rolling
2. Cold rolling
3. Cold spinning
4. Stretch forming
5. Cold forging and Swaging
6. Cold extrusion
7. Coining
8. Embossing
9. Cold bending
10. Roll forming
11. Shot peening
12. High Energy Rate Forming (HERF)

54. Differentiate between hot and cold working.
Ans :

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Hot rolling</th>
<th>Cold rolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Metal is fed into the rolls after being heated above recrystallisation temperature.</td>
<td>Metal is fed into the rolls when its temperature is below recrystallisation temperature.</td>
</tr>
<tr>
<td>2.</td>
<td>Hot rolled metal does not show work hardening effect.</td>
<td>Cold rolled metal shows work hardening effect.</td>
</tr>
<tr>
<td>3.</td>
<td>Coefficient of friction between the rolls and stock is higher.</td>
<td>Coefficient of friction between rolls and stock is relatively lower.</td>
</tr>
</tbody>
</table>

55. Classify shape rolling.
Ans : Shape rolling process can be divided in two parts.
1. Ring rolling
2. Thread rolling

56 Give the types of thread rolling machines.
Ans: There are three types of thread rolling machines:
(i) Reciprocating flat die machines.
(ii) Cylindrical die machines.
(iii) Rotary planetary machines having rotary die and one or more stationary concave-die segments.
The choice of machine depends upon the size and design of the workpiece, the work material and the number of pieces to be produced.

57 Name the type of rolling which cannot be used for RC 37 and define it.
Ans: Thread rolling. It is actually a cold working process in which a plastic deformation takes place.

58 Name the defects in rolled parts.
Ans: There are following types of defects which can be observed in rolled components:
1. Surface defects
2. Internal structural defects
3. Other defects

59 Define surface defects.
Ans: Surface defects include defects like scale, rust, cracks, scratches, gouges, etc. It occurs due to the impurities and inclusions in the original cast material and different conditions related to material preparation and rolling operation.

60 Name the defects in internal structural defects.
Ans: These type of defects include following defects:
   i) Wavy edges  ii) Zipper cracks
   iii) Edge cracks  iv) Alligatoring
   v) Folds  vi) Laminations

61 What are Zipper cracks?
Ans: Due to uneven ratio of mean thickness to the length of the deformation zone, cracks may produce in the centre of the sheet. These cracks are called as Zipper cracks.

62 Explain Folds and Laminations.
Ans: Folds are produced during plate rolling if the reduction per pass is very small. Laminations: Due to incomplete welding of pipe and blow holes during rolling, internal defects or laminations which decreases the strength of material.

63 What happens due to swaging?
Ans: By swaging, one end of a tube is reduced in diameter and passed through the die, whereas on the other side of the die this end is gripped in tongs which are connected to the draw bench.

64 What is cold forging?
Ans: Cold forging is a cold upsetting process adapted for large scale production of small cold upset parts from a wire stock. For example, small bolts, rivets, screws, pins, nails and small machine parts, small balls for ball bearings, etc.

65 Define swaging.
Ans: Rotary swaging is a process of reducing the cross-sectional shape of bars, rods, tubes or wires by a large number of impacting blows with one or more pairs of opposed dies.

66 Give the advantages of swaging.
Ans: Advantages of swaging:
   • Tooling cost is high.
   • Maintenance is easy.
   • Initial investment is high.
   • Semi-skilled operator is required, hence low labour cost.
   • Production rate is high.
   • Consistency of the product.
67 Compare hot and cold working.

Ans:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Hot working</th>
<th>Cold working</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hot working is carried out above the recrystallisation temperature but below the melting point, hence deformation of metal and recovery takes place simultaneously.</td>
<td>Cold working is carried out below the recrystallisation temperature and as such there is not appreciable recovery of metal.</td>
</tr>
<tr>
<td>2.</td>
<td>During the process, residual stresses are not developed in the metal.</td>
<td>During the process, residual stresses are developed in the metal.</td>
</tr>
<tr>
<td>3.</td>
<td>Because of higher deformation temperature used, the stress required for deformation is less.</td>
<td>The stress required to cause deformation is much higher.</td>
</tr>
</tbody>
</table>

**Unit IV**

1 Name the different sheet metals

Ans:


2 Name the different hand tools used in sheets metals.

Ans:


3 Name the commonly used tools.

Ans: In addition to all the tools some other type of commonly used tools ara as follows:

- Steel square  - Bumping hammer
- Mandrel  - Straight edge
- Chisel  - Files

4 Name the operations of sheet metal working

Ans: The main operations are as follows:

- Shearing  - Bending
- Drawing  - Forming

www.studentsfocus.com
5 Explain Shearing
Ans: It is process of cutting a straight line across a strip, sheet or bar shearing process has three important stages;
1) Plastic deformation
2) Fracture (Crack propagation)
3) Shear
Shearing is performed either by using hand or by using machines also.

6 Explain Bending
Ans: The bending operation involves stretching of metal on the outer surface and compressing it on inner surface along a neutral axis which unchanged. Sheet metal can be bent by hammering on a base by hand or by bending machines.

7 Explain drawing
Ans: Drawing operation is used to produce thin walled hollow shapes in sheet metal. It is carried out by using a die and punch on a press machine. If the drawn length is more than the width then the operation is called as deep drawing.

8 Explain forming
Ans: For safety purpose, the edges of the sheet metal products are formed of folded. Also, formed edges provide stiffness to the components so that they will not retain their shapes during handling.

9 What is press working?
Ans: Press working is a chipless manufacturing process by which various components are produced from sheet metal.

10 Why are press machines preferred?
Ans: Press machines are preferred for mass production of similar components, because for each component separate tool is required and the cost of every press tool is very high as compared to the cost of other cutting tools.

11 What is the difference between manually and power operated press?
Ans: The main difference between manually operated press and power press is that, the former moves by means of a screw and the latter by means of a crankshaft.

12 Name any 4 main parts of press.
Ans:
(a) Base  (b) Frame  (c) Ram
(d) Pitman  (e) Clutch and flywheel  (f) Bolster plate

13 What is clutch and flywheel?
Ans: Clutch and flywheel: Flywheel is used to store the energy, which is required to maintain the constant speed of the ram whereas, clutch is used to engage of disengage the drive shaft with the flywheel

14 Name die accessories.
Ans: Die set, Die, Die block, Punch, Lower shoe, Upper shoe, Punch plate, Back up plate, Stripper plate, Knockout.

15. Explain press operations.
Ans: Press operations may be grouped into two categories i.e. cutting operations and forming operations. In cutting operations, the workpiece is stressed beyond its ultimate strength whereas; in forming operations, the stresses are below the ultimate strength of the metal.

16 Define trimming.
Ans: It is used for cutting unwanted excess material from the periphery of a previously formed workpiece.

17 Define shaving
Ans: It is almost similar to trimming, but only small amount of material is removed during the operation as compared to trimming

18 Define lancing
Ans: In this operation, there is a cutting of the sheet metal through a small length and bending this small cut portion downwards

19 What is drawing?
Ans: In this operation, punch forces a sheet metal blank to flow plastically into the clearance between the punch and die. Finally, the blank takes a shape of cup.

20: Explain embossing.
Ans: With the help of this operation, specific shapes or figures are produced on the sheet metal. It is used for decorative purposes of giving details like names, trade marks, specifications, etc, On the steel metal.

21 What is clearance?
Ans: During metal cutting, the shape of the punch is similar to die opening except that, it is smaller on each side. This difference in dimensions between die and punch(making members of a die set) is known as clearance.

22 How is clearance applied in blanking operation?
Ans: In blanking operation, where blank is the desired part, the die opening size is same as blank size and the punch size is obtained by subtracting the clearance from the die opening size.

23 Why is angular clearance provided?
Ans: Angular clearance is provided to enable the blank to clear the die easily and fall freely out of the die block. If the angular clearance is not provided, the punched blank would remain stuck in the die block.

24 What is tonnage capacity?
Ans: The tonnage capacity of a mechanical press is calculated by,
Tonnage capacity = Shear strength of a crankshaft material X Area of crankshaft bearings.
The tonnage capacity of a hydraulic press is calculated by,
Tonnage capacity = Piston area X Oil pressure in the cylinder.

25 What is die space and press adjustment?
Ans: **Die space**: The available surface for mounting the die and punch components in the press.

**Press adjustment**: The distance through which the ram can be lowered below its shut height position.

26 Define penetration.
Ans: The distance which the punch enters into the stock to cause rupture is called as penetration, and generally it is given in terms of the percentage of the stock thickness. The percentage penetration depends on the material being cut and thickness of the material.

27 What is bending?
Ans: Bending is the process in which a straight length is transformed into a curved length. During bending, the outer surface of the material is in tension and inner surface is in compression.

28 Explain bend radius.
Ans: It is the radius of curvature on inside of the bend. If the bend radius is too small, then cracking of a material on the outer tensile surface takes place. To prevent any damage to punch and die, the bend radius should do not be less than 0.8mm.

29 What is drawing?
Ans: If depth of drawn cup is upto half its diameter then the process is called as shallow drawing and if the depth of the drawn cup exceeds the diameter, it is called as deep drawing.

30 What do you mean by shallow and deep drawing?
Ans: If depth cup is upto half its diameter then the process is called as shallow drawing and if the depth of the drawn cup exceeds the diameter, it is called as deep drawing.

31 Define drawing force:
Ans: **Drawing force**:
- the force required to draw a shell is given by,

\[ F = \pi d t \sigma_y (D/d - C), N \]

Where,  
- \( d \) = Finished shell diameter,  
- \( t \) = Blank thickness,  
- \( \sigma_y \) = Yield Strength in tension,  
- \( D \) = Blank diameter,  
- \( C \) = Constant varies between 0.6 to 0.7.

32 What is stretch forming?
Ans: Stretch forming is used for forming smoothly contoured parts or those having double curvatures on the same curved surface out of large and thin sheets of metal.
33 Name the methods of stretch forming.
Ans: Stretch forming can be done by using two methods.
   1) Form block method
   2) Mating die method

34 Give the advantages of stretch following.
Ans: Advantages of Stretch forming.
   • There is no direct bending of the sheet, hence chances of cracks are reduced.
   • Components can be stretched in single operation only.
   • Plastic deformation is because of pure tension only.
   • It is suitable for mass production.
   • Cost of tooling is low.

35 Define formability.
Ans: Formability represents the response and suitability of the material for forming processes.

36 What is process of fracturing?
Ans: It states that, ductility of the metal is lower if its section size is larger.
It refers to identical metal from which specimens of different section thickness have been machined and tested.

37 Name the tests to judge the suitability of metal.
Ans: To judge the suitability of a metal and to find the temperature range for forging, various special tests have been introduced which are as follows:
   1) Bend test
   2) Stretch flanging test
   3) Shrink flanging test

38 Name the ways on which hydro forming can be carried out?
Ans: Hydro forming is a drawing process which can be carried out in two ways:
   1) Hydro - mechanical forming
   2) Electro - hydraulic forming

39 What is explosive forming and how is it classified?
Ans: Explosive forming makes use of the pressure wave generated by an explosion in a fluid, for applying the pressure against the wall of the die. The explosives are used in the form of rod, sheet, granules, stick, liquid, etc. According to the placement of the explosive (charge) the operations are divided in two categories:
   1) Stand off operation
   2) Contact operation.

40 Why is explosive forming process used?
Ans: Explosive forming process is used for the following operations:
   • Blanking       • Embossing       • Coining
   • Drawing        • sizing           • Expanding
   • Cutting, etc.

41 Name the explosives and how are they divided?
Explosives can be solid (TNT- trinitro toluene), liquid (Nitroglycerine), or gaseous (oxygen and acetylene mixtures).

Explosives are divided into two classes; Low Explosives in which the ammunition burns rapidly rather than exploding, hence pressure build up is not large, and High Explosives which have a high rate of reaction with a large pressure build up. Low explosives are generally used as propellants in guns and in rockets for the propelling of missiles.

42 Name the certain die materials for explosive forming.
Ans: Kirksite and plastic faced dies are employed for light forming operations; tool steels, cast steels, and ductile iron for medium requirements.

43 What is rubber pad forming?
Ans: Rubber pad forming process is also known as Marform process. It is metal working process where sheet metal is pressed between a die and rubber block.

44: Give the applications of rubber pad forming.
Ans: Applications of rubber pad forming:
- This process is used for producing flanged cylindrical and rectangular cups, spherical domes, shells with parallel or tapered walls.
- Also used for producing variety of unsymmetrical shapes.

45 What does a magnetic pulse forming consists of?
Ans: A basic magnetic pulse forming circuit consists of:
- Energy storage capacitor
- Power supply
- Switch
- Coil

46 Explain shot peening.
Ans: Shot peening process consists of throwing a blast of metal shots on to the surface of a component. The blast may be thrown either by using air pressure or by a wheel rotating at high speed. This high velocity metal blast shot provides a sort of compression over the surface of a component. This increases the strength and hardness of the surface and also its fatigue resistance.

47 Where is metal spinning used?
Ans : Usually, spinning process is used for making cup shaped articles which are symmetrically such as pressure vessels, refinery equipments, tanks, etc.

48 Define roll forming
Ans : Roll forming process consists of feeding a continuous metal strip through a series of rolls whereby it is gradually formed into required shapes.

49 What are the operations performed on press brake?
Ans : Press brake can perform operations like bending, forming, blanking, piercing, notching, embossing, wiring, etc. by using simple dies.
Unit V

1. Name the characteristic of polymer. (Any Four)
   **Ans:** The important characteristic of polymers are
   1) Light weight
   2) High Corrosion resistance.
   3) Low density.
   4) Low thermal and electrical properties.
   5) Low mechanical properties (can be improved by fibre reinforcement of plastics).

2. On what basis are polymers classified and how are they classified?
   **Ans:** According to mechanical response at high temperatures, polymers are classified into two major categories:
   1) Thermoplastic polymers (Soften when heated and harden when cooled)
   2) Thermosetting polymers (Soften when heated and permanently hardened when cooled).

   **Ans:** These plastics are formed by condensation polymerisation. During initial heating, covalent cross-links are formed which anchor the chains together and resist the vibrational and rotational chain motions at high temperature. If heated to excessively high temperature, there occurs severance of these crosslink bonds leading to polymer degradation.

4. Differentiate thermosetting and thermoplastic polymers (Two points only)
   **Ans:**
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Thermoplastics</th>
<th>Thermosetting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>They are formed by addition polymerisation</td>
<td>They are formed by condensation.</td>
</tr>
<tr>
<td>2.</td>
<td>They are linear polymers composed of chain molecules.</td>
<td>They are composed of three dimensional network of cross-linked molecules.</td>
</tr>
</tbody>
</table>

5. Where are the thermosetting polymers used?
   **Ans:** These polymers are used in
   (i) Vulcanised rubbers
   (ii) Epoxides
   (iii) Phenolic
   (iv) Polyester resins
   (v) Urea formaldehyde, etc.

6. Define monomer
   **Ans:** Monomer: It is a small molecule that consists of a single unit / blocking block.

7. Define Polymer.
   **Ans:** It is macromolecule that is formed by repeated linking of many monomers.

8. Define Homopolymer.
   **Ans:** It is a polymer that is made up of identical monomer.
   -M-M-M-M-          -M₁-M₂-M₁-M₂
9 Define Copolymer.
Ans: It is a polymer that is made by adding different monomers.

10 Define Degree of polymerization
Ans: It is the number of repetitive units present in one molecule of a polymer.
Degree of polymerisation = \frac{\text{Molecular weight of a polymer}}{\text{Molecular weight of a single monomer}}

11 Define Isomerism.
Ans: It is a phenomenon where different atomic configurations are responsible for the formation of same configuration.

12 Define Oligo-polymers.
Ans: Oligo polymers or oligomers are polymers that have very short chains with molecular weight in order of 100g/mol. They are mainly liquids or gases.

13 Define High polymers.
Ans: Polymers which have a very high molecular weight ranging between 10,000 and 1,000,000 g/mol. are known as High-polymers. They are mainly solids.

14 Give the three methods of mechanism of polymerisation:
Ans: There are three general methods or mechanisms of polymerisation:
(1) Addition Polymerisation
(2) Copolymerisation
(3) Condensation polymerisation

15 Define addition polymerization.
Ans: The Polymer is produced by adding a second monomer to the first, a third monomer to this dimer and so on till the long polymer chain is terminated. This process is called as addition polymerisation.

16 Define copolymerisation and give its example.
Ans: It is the addition polymerisation of two or more different monomer forming copolymers.
Example: Styrene and butadiene combine to give a copolymer of butadiene - styrene, a rubber used in tyres.

17 Define condensation polymerisation and give its other name.
Ans: Condensation polymerisation is also known as step-growth polymerisation.
It is the formation of polymers by step wise intermolecular chemical reactions that normally involve atleast two different monomers.

18 Why are additives used and enlist its advantages?
Ans: Additives used to improve the properties and performance of polymers.
Advantages of additives when added to the polymers are:
(i) Improve mechanical properties.
(ii) Reduce the cost.
(iii) Improve the thermal processing such as moldability.
(iv) Improve the appearance and aesthetic properties.
19 Enlist some polymer additives.
Ans: The following mentioned are the various polymer additives used in practice:
(1) Filler material (2) Plasticizers (3) Stabilizers
(4) Colorants (5) Flame retardants (6) Reinforcements
(7) Lubricants.

20 Why are fillers used?
Ans:
(1) It improves the compressive and tensile strengths of the polymer.
(2) Reduces the cost of the final product.
(3) Improvement in the thermal and dimensional properties of the polymers.

21 Why are plasticizers used?
Ans:
(1) They improve the ductility, flexibility and toughness of the polymer.
(2) Hardness and stiffness are reduced.
(3) During moulding, plasticizers control the flow of the polymer.

22 Why are stabilizers used?
Ans:
(1) They prevent deterioration of polymer due to environmental effects.
(2) Also prevent deterioration due to ultraviolet radiation.
(3) Help to extend the life of the finished product.

23 Name the methods of processing thermoplastics.
Ans: Thermoplastics can be processed to their final size and shape with the help of following processes:
(1) Injection moulding (plunger and screw type) (2) Rotational moulding
(3) Blow moulding (4) Film blowing
(5) Sheet forming process.

24 Give the types of injection moulding.
Ans:
(1) Ram or Plunger type Injection Moulding
(2) Screw type Injection Moulding

25 What are the applications of injection moulding?
Ans: Typical parts produced by this process are cups, chairs, toys, containers, knobs, automobile parts (car dash-board, car handles, etc), air conditioner parts, plumbing fittings, electrical fittings, etc. This process is used for making components which consists of complex threads. Production of intricate shapes and thin walled parts like radiator fan can be done by this process.

26 Enlist the types of blow moulding.
Ans: There are various types of blow moulding process which are as follows:
(1) Injection blow moulding
(2) Extrusion blow moulding
27. Where is blow moulding used?

Ans:
1. Blow moulding process is mainly used for making cosmetic packaging, food and water bottles, pipes, floats, toys, doll bodies and many other articles.
2. It is also used for making hollow containers, automobile fuel tanks, boat fenders, heater ducts and hollow industrial parts like drum.

28. Explain film blowing

Ans: In this process, a thin walled tube is extruded vertically as shown in fig. 5.6 and expanded into a balloon like shape by blowing air through the centre of extrusion die until the desired film thickness is obtained.

29. What is the difference between rolling and calendering?

Ans: The main difference between rolling and calendering is that, in calendering there is appreciable thickening after the material has reached minimum thickness at the roll gap and the pre-calendered material is not in the sheet form.

30. Give the application of calendering?

Ans: (1) Vinyl, polyethylene, cellulose acetate films, shower curtain, tapes, trays, ATM cards, lamination, and transparent films used for packaging.
   (2) It is also used for production of rainwear, shower curtains, tapes, ATM cards, laminations and transparent film used for packaging.

31. Define extrusion moulding.

Ans: Extrusion process is a continuous process in which the hot plasticized material forced through the die opening of required shape.

32. Name the three sections of screw.

Ans: The screw have three different sections which are as follows
   (1) Feed section
   (2) Transition or melting section
   (3) Pumping section

33. Write the applications of extrusion moulding.

Ans: (1) The extrusion moulding process is used for producing solid rods, pipes or tubes of U, J, Y or other sections.

   (2) Also used for extrusion of candy canes, chewing gums, drinking straws, plumbing pipes, door insulation seals, optical fibers, plastic coated wires, window frames, sheets, strips for electrical applications, etc.

34. Explain thermoforming.

Ans: It is a series of processes for forming thermoplastic sheet or film over a mould with the application of heat and pressure.

35. List the advantages of thermoforming.

Ans: Advantages fo Thermoforming:
• Initial set-up cost is low.
• Time required for set-up is low.
• Production cost is low.
• During the process less thermal stresses are produced.
• Intricate shapes are easily formed.

36 From what process are small jelly containers used in restaurants, luggage bags, refrigerator inner panels made? And define it.
Ans: Thermoforming process.
It is a series of processes for forming thermoplastic sheet or film over a mould with the application of heat and pressure.

37 What are the processes used for thermosetting plastics?
Ans: For processing of thermosetting plastics following processes are most commonly used:
(1) Compression moulding and
(2) Transfer moulding

38 What are the factors of a successful compression moulding?
Ans: Following are the four primary factors in a successful compression moulding process:
 o Quantity of material
 o Heating time and technique
 o Force applied to the mould
 o Cooling time and technique

39 Give the application of compression moulding.
Ans: 
(1) Compression moulding is used for making flatwares, gear, buttons, buckles, knobs, handles, dishes, container taps and fittings
(2) Also used for moulding of electrical and electronic components, washing machine agitators and housings.

40 What is gate moulding?
Ans: This is the process of forming articles in a closed mould, where the fluid plastic material is conveyed into the mould cavity under pressure from outside of the mould.

41 What does laminated plastics consists of and write its principal?
Ans: Laminated plastics consists of sheets of paper, fabric, wood asbestos, cellulose or other similar materials that are coated with resin.
Laminated process is based on the principal of layers of sheets like metal foil, paper, etc. bonded together in a stack.

42 How is laminated plastic classified?
Ans: Lamination process is classified in two categories:
 o High pressure laminates
 o Low pressure laminates

43 What are the pressures used is low and high pressure lamination?
ANS:
Low pressure laminates:
- In this process, pressures up to 28MPa are applied.

High pressure laminates:
The pressure generally ranges from 8MPa to 24MPa.

44 Name the processing methods of plastics?
ANS:
(1) Plug and ring forming         (2) Pressure forming
(3) Draw forming                 (4) Reaction injection moulding (RIM)
(5) Drape forming

45 Define pressure forming?
ANS: In this method, the heated plastics sheet is formed into the required shape between a pair of male and female dies. In this process vacuum is not used.

46 What is draw forming?
ANS: This process is similar to deep drawing process for metal. A heated blank of plastics sheet is placed over a die and held firmly by holding plates. A punch is pressed down into the die cavity to the material into the die and around its own body.

47 Explain the drape forming?
ANS: It is the simplest of all methods of forming. It consists of draping the heated plastics sheet over the contours of a male form, followed by pressure and cooling.

48 Define reaction injection moulding?
ANS: RIM is the different forms the conventional injection moulding process as the molten polymer is not injected into a mould but a mixture of two or more monomers (reactants) are forced into a mould cavity. The chemical reaction takes places between the mixture and the heat is generated. This generated heat is used to form a plastics polymer that solidifies and produces thermos components.